On quasiidenties of torsion free nilpotent loops
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 45-50
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that any loop which contains an infinite cyclic group and does not contain infinite number of relative prime periodic elements has an infinite and independent basis of quasiidentities. In particular, any torsion free nilpotent loop has an infinite and independent basis of quasiidentities.
@article{BASM_2010_3_a5,
author = {Alexandru Covalschi},
title = {On quasiidenties of torsion free nilpotent loops},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {45--50},
year = {2010},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2010_3_a5/}
}
Alexandru Covalschi. On quasiidenties of torsion free nilpotent loops. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 45-50. http://geodesic.mathdoc.fr/item/BASM_2010_3_a5/
[1] Malcev A. I., “About inclusion of associative systems in groups”, Mat. Sb., 6(48):2 (1939), 331–336 (Russian) | MR | Zbl
[2] Malcev A. I., “About inclusion of associative systems in groups. II”, Mat. Sb., 8(50):2 (1940), 251–263 (Russian) | MR | Zbl
[3] Malcev A. I., Algebraic systems, Nauka, Moscow, 1970 (Russian) | MR
[4] Belousov V. D., Bases of the theory of quasigroups and loops, Nauka, Moscow, 1967 (Russian) | MR | Zbl
[5] Chein O., Pflugfelder H. O., Smith J. D. H., Quasigroups and loops: Theory and Applications, Heldermann-Verlag, Berlin, 1990 | MR | Zbl
[6] Gorbunov V. A., “Coverings in lattices of quasivarieties and independent axiomatizability”, Algebra i logika, 16:5 (1978), 505–548 (Russian) | MR