A heuristic algorithm for the two-dimensional single large bin packing problem
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 23-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a heuristic algorithm based on concave corner (BCC) for the two-dimensional rectangular single large packing problem (2D-SLBPP), and compare it against some heuristic and metaheuristic algorithms from the literature. The experiments show that our algorithm is highly competitive and could be considered as a viable alternative, for 2D-SLBPP. Especially for large test problems, the algorithm could get satisfied results more quickly than other approaches in literature.
@article{BASM_2010_3_a2,
     author = {V. M. Kotov and Dayong Cao},
     title = {A heuristic algorithm for the two-dimensional single large bin packing problem},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {23--28},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2010_3_a2/}
}
TY  - JOUR
AU  - V. M. Kotov
AU  - Dayong Cao
TI  - A heuristic algorithm for the two-dimensional single large bin packing problem
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 23
EP  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2010_3_a2/
LA  - en
ID  - BASM_2010_3_a2
ER  - 
%0 Journal Article
%A V. M. Kotov
%A Dayong Cao
%T A heuristic algorithm for the two-dimensional single large bin packing problem
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 23-28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2010_3_a2/
%G en
%F BASM_2010_3_a2
V. M. Kotov; Dayong Cao. A heuristic algorithm for the two-dimensional single large bin packing problem. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 23-28. http://geodesic.mathdoc.fr/item/BASM_2010_3_a2/

[1] Lodi A., Martello S., Monaci M., “Two-dimensional packing problems: A survey”, European Journal of Operational Research, 141:2 (2002), 241–252 | DOI | MR | Zbl

[2] Dyckhoff H., “A typology of cutting and packing problems”, European Journal of Operational Research, 44:2 (1990), 145–159 | DOI | MR | Zbl

[3] Oliveira J. F., Wäscher G., “Cutting and Packing”, Editorial, European Journal of Operational Research, 183:3 (2007), 1106–1108 | DOI

[4] Wäscher G., Haussner H., Schumann H., “An improved typology of cutting and packing problems”, European Journal of Operational Research, 183:3 (2007), 1109–1130 | DOI | MR | Zbl

[5] Hopper E., Turton B. C. H., “An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem”, European Journal of Operational Research, 128:1 (2001), 34–57 | DOI | Zbl

[6] Alvarez-Valdes R., Parreño F., Tamarit J. M., “A GRASP algorithm for constrained two-dimensional non-guillotine cutting problems”, Journal of Operational Research Society, 56:4 (2005), 414–425 | DOI | Zbl

[7] Alvarez-Valdes R., Parreño F., Tamarit J. M., “A tabu search algorithm for two-dimensional non-guillotine cutting problems”, European Journal of Operational Research, 183:3 (2007), 1167–1182 | DOI | MR | Zbl