Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2010_3_a0, author = {Galina Filipuk}, title = {Generalized hypergeometric systems and the fifth and sixth {Painlev\'e} equations}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {3--10}, publisher = {mathdoc}, number = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2010_3_a0/} }
TY - JOUR AU - Galina Filipuk TI - Generalized hypergeometric systems and the fifth and sixth Painlev\'e equations JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2010 SP - 3 EP - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2010_3_a0/ LA - en ID - BASM_2010_3_a0 ER -
Galina Filipuk. Generalized hypergeometric systems and the fifth and sixth Painlev\'e equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 3-10. http://geodesic.mathdoc.fr/item/BASM_2010_3_a0/
[1] Ando K., Kohno M., “A certain reduction of a single differential equation to a system of linebreak differential equations”, Kumamoto J. Math., 19 (2006), 99–114 | MR | Zbl
[2] Sen A., Hone A. N. W., Clarkson P. A., “Darboux transformations and the symmetric fourth Painlevé equation”, J. Phys. A Math. Gen., 38 (2005), 9751–9764 | DOI | MR | Zbl
[3] Filipuk G., “A hypergeometric system of the Heun equation and middle convolution”, J. Phys. A Math. Theor., 42 (2009), 175208, 11 pp. | DOI | MR | Zbl
[4] Filipuk G., “On the middle convolution and birational symmetries of the sixth Painlev'e equation”, Kumamoto J. Math., 19 (2006), 15–23 | MR | Zbl
[5] Haraoka Y., Filipuk G., “Middle convolution and deformation for Fuchsian systems”, J. Lond. Math. Soc., 76 (2007), 438–450 | DOI | MR | Zbl
[6] Inaba M., Iwasaki K., Saito M.-H., “Bäcklund transformations of the sixth Painlevé equation in terms of Riemann–Hilbert correspondence”, IMRN, 1 (2004), 1–30 | DOI | MR | Zbl
[7] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A Modern Theory of Special Functions, Friedr. Vieweg and Sohn, Braunschweig, 1991 | MR | Zbl
[8] Kawakami H., Generalized Okubo systems and the middle convolution, PhD thesis, University of Tokyo, 2009 | MR | Zbl
[9] Kohno M., Global Analysis in Linear Differential Equations, Springer, Berlin, 1999 | MR
[10] Mazzocco M., “Irregular isomonodromic deformations for Garnier systems and Okamoto's canonical transformations”, J. London Math. Soc. (2), 70:2 (2004), 405–419 | DOI | MR | Zbl
[11] Noumi M., Yamada Y., “A new Lax pair for the sixth Painlevé equation associated with $\widehat{so}(8)$”, Microlocal analysis and complex Fourier analysis, World Sci. Publ., River Edge, NJ, 2002, 238–252 | DOI | MR | Zbl
[12] Okamoto K., “Isomonodromic deformation and Painlevé equations, and the Garnier system”, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., 33 (1986), 575–618 | MR | Zbl