Generalized hypergeometric systems and the fifth and sixth Painlev\'e equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper concerns (generalized) hypergeometric systems associated with the fifth and sixth Painlevé equations, which are the second order nonlinear ordinary differential equations. The Painlevé equations govern monodromy preserving deformations of certain second order linear scalar equations. We reduce these scalar equations to generalized hypergeometric systems.
@article{BASM_2010_3_a0,
     author = {Galina Filipuk},
     title = {Generalized hypergeometric systems and the fifth and sixth {Painlev\'e} equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--10},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2010_3_a0/}
}
TY  - JOUR
AU  - Galina Filipuk
TI  - Generalized hypergeometric systems and the fifth and sixth Painlev\'e equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 3
EP  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2010_3_a0/
LA  - en
ID  - BASM_2010_3_a0
ER  - 
%0 Journal Article
%A Galina Filipuk
%T Generalized hypergeometric systems and the fifth and sixth Painlev\'e equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 3-10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2010_3_a0/
%G en
%F BASM_2010_3_a0
Galina Filipuk. Generalized hypergeometric systems and the fifth and sixth Painlev\'e equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 3-10. http://geodesic.mathdoc.fr/item/BASM_2010_3_a0/