Generalized hypergeometric systems and the fifth and sixth Painlev\'e equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper concerns (generalized) hypergeometric systems associated with the fifth and sixth Painlevé equations, which are the second order nonlinear ordinary differential equations. The Painlevé equations govern monodromy preserving deformations of certain second order linear scalar equations. We reduce these scalar equations to generalized hypergeometric systems.
@article{BASM_2010_3_a0,
     author = {Galina Filipuk},
     title = {Generalized hypergeometric systems and the fifth and sixth {Painlev\'e} equations},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--10},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2010_3_a0/}
}
TY  - JOUR
AU  - Galina Filipuk
TI  - Generalized hypergeometric systems and the fifth and sixth Painlev\'e equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 3
EP  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2010_3_a0/
LA  - en
ID  - BASM_2010_3_a0
ER  - 
%0 Journal Article
%A Galina Filipuk
%T Generalized hypergeometric systems and the fifth and sixth Painlev\'e equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 3-10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2010_3_a0/
%G en
%F BASM_2010_3_a0
Galina Filipuk. Generalized hypergeometric systems and the fifth and sixth Painlev\'e equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2010), pp. 3-10. http://geodesic.mathdoc.fr/item/BASM_2010_3_a0/

[1] Ando K., Kohno M., “A certain reduction of a single differential equation to a system of linebreak differential equations”, Kumamoto J. Math., 19 (2006), 99–114 | MR | Zbl

[2] Sen A., Hone A. N. W., Clarkson P. A., “Darboux transformations and the symmetric fourth Painlevé equation”, J. Phys. A Math. Gen., 38 (2005), 9751–9764 | DOI | MR | Zbl

[3] Filipuk G., “A hypergeometric system of the Heun equation and middle convolution”, J. Phys. A Math. Theor., 42 (2009), 175208, 11 pp. | DOI | MR | Zbl

[4] Filipuk G., “On the middle convolution and birational symmetries of the sixth Painlev'e equation”, Kumamoto J. Math., 19 (2006), 15–23 | MR | Zbl

[5] Haraoka Y., Filipuk G., “Middle convolution and deformation for Fuchsian systems”, J. Lond. Math. Soc., 76 (2007), 438–450 | DOI | MR | Zbl

[6] Inaba M., Iwasaki K., Saito M.-H., “Bäcklund transformations of the sixth Painlevé equation in terms of Riemann–Hilbert correspondence”, IMRN, 1 (2004), 1–30 | DOI | MR | Zbl

[7] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A Modern Theory of Special Functions, Friedr. Vieweg and Sohn, Braunschweig, 1991 | MR | Zbl

[8] Kawakami H., Generalized Okubo systems and the middle convolution, PhD thesis, University of Tokyo, 2009 | MR | Zbl

[9] Kohno M., Global Analysis in Linear Differential Equations, Springer, Berlin, 1999 | MR

[10] Mazzocco M., “Irregular isomonodromic deformations for Garnier systems and Okamoto's canonical transformations”, J. London Math. Soc. (2), 70:2 (2004), 405–419 | DOI | MR | Zbl

[11] Noumi M., Yamada Y., “A new Lax pair for the sixth Painlevé equation associated with $\widehat{so}(8)$”, Microlocal analysis and complex Fourier analysis, World Sci. Publ., River Edge, NJ, 2002, 238–252 | DOI | MR | Zbl

[12] Okamoto K., “Isomonodromic deformation and Painlevé equations, and the Garnier system”, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., 33 (1986), 575–618 | MR | Zbl