On the Diophantine equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 121-124

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the existence and the ways of finding some positive integer solutions $x,y,z$ for the equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$ are studied.
@article{BASM_2010_2_a8,
     author = {Gheorghe M. Tudor and Tudor B{\^\i}nzar},
     title = {On the {Diophantine} equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {121--124},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2010_2_a8/}
}
TY  - JOUR
AU  - Gheorghe M. Tudor
AU  - Tudor Bînzar
TI  - On the Diophantine equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 121
EP  - 124
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2010_2_a8/
LA  - en
ID  - BASM_2010_2_a8
ER  - 
%0 Journal Article
%A Gheorghe M. Tudor
%A Tudor Bînzar
%T On the Diophantine equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 121-124
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2010_2_a8/
%G en
%F BASM_2010_2_a8
Gheorghe M. Tudor; Tudor Bînzar. On the Diophantine equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 121-124. http://geodesic.mathdoc.fr/item/BASM_2010_2_a8/