On the Diophantine equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 121-124
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the existence and the ways of finding some positive integer solutions $x,y,z$ for the equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$ are studied.
@article{BASM_2010_2_a8,
author = {Gheorghe M. Tudor and Tudor B{\^\i}nzar},
title = {On the {Diophantine} equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {121--124},
publisher = {mathdoc},
number = {2},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2010_2_a8/}
}
TY - JOUR
AU - Gheorghe M. Tudor
AU - Tudor Bînzar
TI - On the Diophantine equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$
JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY - 2010
SP - 121
EP - 124
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/BASM_2010_2_a8/
LA - en
ID - BASM_2010_2_a8
ER -
Gheorghe M. Tudor; Tudor Bînzar. On the Diophantine equation $x^x\cdot y^{y^{k(y)}}=z^{z^p}$. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 121-124. http://geodesic.mathdoc.fr/item/BASM_2010_2_a8/