On the centralizers of finite subgroups in quasi-HNN groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 100-108
Cet article a éte moissonné depuis la source Math-Net.Ru
Quasi-HNN groups can be characterized as a generalization of HNN groups in the sense that there is a stable letter $t$ such that the element $t^2$ is in the base. In this paper we show that under certain conditions the centralizer of a finite subgroup in a quasi-HNN group is contained in a conjugate of the base. As an application we show that the centralizer of a finite subgroup in a one-relator group is contained in a conjugate of a one-relator subgroup of shorter relator.
@article{BASM_2010_2_a6,
author = {R. M. S. Mahmood},
title = {On the centralizers of finite subgroups in {quasi-HNN} groups},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {100--108},
year = {2010},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2010_2_a6/}
}
R. M. S. Mahmood. On the centralizers of finite subgroups in quasi-HNN groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 100-108. http://geodesic.mathdoc.fr/item/BASM_2010_2_a6/
[1] Khanfar M. I., Mahmood R. M. S., “On quasi HNN groups”, Kuwait. J. Sci. Eng., 29 (2002), 13–24 | MR | Zbl
[2] Lyndon R. C., Schupp P. E., Combinatorial Group Theory, Springer–Verlag, Berlin–New York, 1977 | MR | Zbl
[3] Khanfar M. I., Mahmood R. M. S., “Subgroups of quasi-HNN groups”, Int. J. Math. Sci., 31:12 (2002), 731–743 | DOI | MR | Zbl
[4] Mahmood R. M. S., “On the converse of the theory of groups acting on trees with inversions”, Mediterr. J. of Math., 6:1 (2009), 89–106 | DOI | MR