On subsemimodules of semimodules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 20-30

Voir la notice de l'article provenant de la source Math-Net.Ru

P. J. Allen [1] introduced the notion of a $Q$-ideal and a construction process was presented by which one can build the quotient structure of a semiring modulo a $Q$-ideal. Here we introduce the notion of $Q_M$-subsemimodule $N$ of a semimodule $M$ over a semiring $R$ and construct the factor semimodule $M/N$. It is shown that this notion inherits most of the essential properties of the factor modules over a ring.
@article{BASM_2010_2_a1,
     author = {Reza Ebrahim Atani and Shahabaddin Ebrahimi Atani},
     title = {On subsemimodules of semimodules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {20--30},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2010_2_a1/}
}
TY  - JOUR
AU  - Reza Ebrahim Atani
AU  - Shahabaddin Ebrahimi Atani
TI  - On subsemimodules of semimodules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 20
EP  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2010_2_a1/
LA  - en
ID  - BASM_2010_2_a1
ER  - 
%0 Journal Article
%A Reza Ebrahim Atani
%A Shahabaddin Ebrahimi Atani
%T On subsemimodules of semimodules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 20-30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2010_2_a1/
%G en
%F BASM_2010_2_a1
Reza Ebrahim Atani; Shahabaddin Ebrahimi Atani. On subsemimodules of semimodules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 20-30. http://geodesic.mathdoc.fr/item/BASM_2010_2_a1/