On subsemimodules of semimodules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 20-30
Voir la notice de l'article provenant de la source Math-Net.Ru
P. J. Allen [1] introduced the notion of a $Q$-ideal and a construction process was presented by which one can build the quotient structure of a semiring modulo a $Q$-ideal. Here we introduce the notion of $Q_M$-subsemimodule $N$ of a semimodule $M$ over a semiring $R$ and construct the factor semimodule $M/N$. It is shown that this notion inherits most of the essential properties of the factor modules over a ring.
@article{BASM_2010_2_a1,
author = {Reza Ebrahim Atani and Shahabaddin Ebrahimi Atani},
title = {On subsemimodules of semimodules},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {20--30},
publisher = {mathdoc},
number = {2},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2010_2_a1/}
}
TY - JOUR AU - Reza Ebrahim Atani AU - Shahabaddin Ebrahimi Atani TI - On subsemimodules of semimodules JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2010 SP - 20 EP - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2010_2_a1/ LA - en ID - BASM_2010_2_a1 ER -
Reza Ebrahim Atani; Shahabaddin Ebrahimi Atani. On subsemimodules of semimodules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2010), pp. 20-30. http://geodesic.mathdoc.fr/item/BASM_2010_2_a1/