On a product of classes of algebraic systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2010), pp. 106-120
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper defines a product of classes of algebraic systems and proves that it is a universal class, a quasi-variety or variety if these classes are universal classes, quasi-varieties or varieties, respectively.
@article{BASM_2010_1_a9,
author = {Vasile I. Ursu},
title = {On a~product of classes of algebraic systems},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {106--120},
year = {2010},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2010_1_a9/}
}
Vasile I. Ursu. On a product of classes of algebraic systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2010), pp. 106-120. http://geodesic.mathdoc.fr/item/BASM_2010_1_a9/
[1] Taylor W., “Caracterizing Mal'cev conditions”, Algebra Universalis, 3:3 (1973), 351–397 | DOI | MR | Zbl
[2] Birkhoff G., “Universal algebra”, Proc. First. Canad. Math. Congr., Montreal, 1945, 310–326 | MR
[3] Mal'cev A. I., Selected works, v. 1, Classical algebra, Nauka, Moskva, 1976, 331–335 (in Russian) | MR
[4] Mal'cev A. I., Algebraic systems, Nauka, Moskva, 1970 (in Russian) | MR
[5] Gorbunov V. A., Theory of quasivarieties of algebraic systems, Siberian school of algebra and logic, Novosibirsk, 1999 (in Russian)