An approach for determining the matrix of limiting state probabilities in discrete Markov processes
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2010), pp. 77-91
Cet article a éte moissonné depuis la source Math-Net.Ru
A new approach for determining the matrix of limiting state probabilities in Markov processes is proposed and a polynomial time algorithm for calculating this matrix is grounded. The computational complexity of the algorithm is $O(n^4)$, where $n$ is the number of the states of the discrete system.
@article{BASM_2010_1_a6,
author = {Dmitrii Lozovanu and Alexandru Lazari},
title = {An approach for determining the matrix of limiting state probabilities in discrete {Markov} processes},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {77--91},
year = {2010},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2010_1_a6/}
}
TY - JOUR AU - Dmitrii Lozovanu AU - Alexandru Lazari TI - An approach for determining the matrix of limiting state probabilities in discrete Markov processes JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2010 SP - 77 EP - 91 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASM_2010_1_a6/ LA - en ID - BASM_2010_1_a6 ER -
%0 Journal Article %A Dmitrii Lozovanu %A Alexandru Lazari %T An approach for determining the matrix of limiting state probabilities in discrete Markov processes %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2010 %P 77-91 %N 1 %U http://geodesic.mathdoc.fr/item/BASM_2010_1_a6/ %G en %F BASM_2010_1_a6
Dmitrii Lozovanu; Alexandru Lazari. An approach for determining the matrix of limiting state probabilities in discrete Markov processes. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2010), pp. 77-91. http://geodesic.mathdoc.fr/item/BASM_2010_1_a6/
[1] Helmberg G., Voltkamp G., “On Fadeev-Leverrier's Method for the Computation of the Characteristic Polynomial of the Matrix and of Eigenvectors”, Linear Algebra and its Application, 185 (1993), 219–233 | DOI | MR | Zbl
[2] Howard R. A., Dynamic Programming and Markov Processes, Wiley, 1960 | MR | Zbl
[3] Lozovanu D., Pickl S., “Dynamic Programming Algorithms for Solving Stochastic Discrete Control Problems”, Bulletin of the Academy of Science of RM. Mathematics, 2009, no. 2(60), 73–90 | MR | Zbl
[4] Puterman M., Markov Decision Processes, Wiley, 1993 | MR
[5] Paţiuc V., Râbacova G., Secrieru I., Zolotarevschi V., Metode numerice în probleme diferenţiale, integrale şi de valori proprii, Chişinău, 2001