About rings of continuous functions in the expanded field of numbers
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2010), pp. 47-54

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article the generalized rings $C_\infty(X)$ of all continuous functions on the expanded straight line are studied. The conditions under which $C_\infty(X)$ is a ring or a linear space are determined.
@article{BASM_2010_1_a3,
     author = {D. Ipate and R. Lupu},
     title = {About rings of continuous functions in the expanded field of numbers},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {47--54},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2010_1_a3/}
}
TY  - JOUR
AU  - D. Ipate
AU  - R. Lupu
TI  - About rings of continuous functions in the expanded field of numbers
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2010
SP  - 47
EP  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2010_1_a3/
LA  - en
ID  - BASM_2010_1_a3
ER  - 
%0 Journal Article
%A D. Ipate
%A R. Lupu
%T About rings of continuous functions in the expanded field of numbers
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2010
%P 47-54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2010_1_a3/
%G en
%F BASM_2010_1_a3
D. Ipate; R. Lupu. About rings of continuous functions in the expanded field of numbers. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2010), pp. 47-54. http://geodesic.mathdoc.fr/item/BASM_2010_1_a3/