Singular limits of solutions to the Cauchy problem for second order linear differential equations in Hilbert spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 81-95
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the behavior of solutions to the problem
$$
\begin{cases}
\varepsilon\Big(u''_\varepsilon(t)+A_1u_\varepsilon(t)\Big)+u'_\varepsilon(t)+ A_0u_\varepsilon(t)=f(t),\quad t>0,\\
u_\varepsilon(0)=u_0,\qquad u'_\varepsilon(0)=u_1,
\end{cases}
$$
in the Hilbert space $H$ as $\varepsilon\to0$, where $A_1$ and $A_0$ are two linear selfadjoint operators.
@article{BASM_2009_3_a8,
author = {Galina Rusu},
title = {Singular limits of solutions to the {Cauchy} problem for second order linear differential equations in {Hilbert} spaces},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {81--95},
publisher = {mathdoc},
number = {3},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2009_3_a8/}
}
TY - JOUR AU - Galina Rusu TI - Singular limits of solutions to the Cauchy problem for second order linear differential equations in Hilbert spaces JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2009 SP - 81 EP - 95 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2009_3_a8/ LA - en ID - BASM_2009_3_a8 ER -
%0 Journal Article %A Galina Rusu %T Singular limits of solutions to the Cauchy problem for second order linear differential equations in Hilbert spaces %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2009 %P 81-95 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2009_3_a8/ %G en %F BASM_2009_3_a8
Galina Rusu. Singular limits of solutions to the Cauchy problem for second order linear differential equations in Hilbert spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 81-95. http://geodesic.mathdoc.fr/item/BASM_2009_3_a8/