On commutative Moufang loops with some restrictions for subloops and subgroups of its multiplication groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 52-56

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if an infinite commutative Moufang loop $L$ has such an infinite subloop $H$ that in $L$ every associative subloop which has with $H$ an infinite intersection is a normal subloop then the loop $L$ is associative. It is also proved that if the multiplication group $\mathfrak M$ of infinite commutative Moufang loop $L$ has such an infinite subgroup $\mathfrak N$ that in $\mathfrak M$ every abelian subgroup which has with $\mathfrak N$ an infinite intersection is a normal subgroup then the loop $L$ is associative.
@article{BASM_2009_3_a4,
     author = {Natalia Lupashco},
     title = {On commutative {Moufang} loops with some restrictions for subloops and subgroups of its multiplication groups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {52--56},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2009_3_a4/}
}
TY  - JOUR
AU  - Natalia Lupashco
TI  - On commutative Moufang loops with some restrictions for subloops and subgroups of its multiplication groups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 52
EP  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2009_3_a4/
LA  - en
ID  - BASM_2009_3_a4
ER  - 
%0 Journal Article
%A Natalia Lupashco
%T On commutative Moufang loops with some restrictions for subloops and subgroups of its multiplication groups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 52-56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2009_3_a4/
%G en
%F BASM_2009_3_a4
Natalia Lupashco. On commutative Moufang loops with some restrictions for subloops and subgroups of its multiplication groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 52-56. http://geodesic.mathdoc.fr/item/BASM_2009_3_a4/