On $\pi$-quasigroups isotopic to abelian groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 109-117
Cet article a éte moissonné depuis la source Math-Net.Ru
A $\pi$-quasigroup is a quasigroup satisfying one of the seven minimal identities from the V. Belousov's classification given in [1]. Some general results about $\pi$-quasigroups isotopic to groups are obtained by V. Belousov and A. Gwaramija in [1] and [2]. $\pi$-Quasigroups isotopic to abelian groups are investigated in this paper.
@article{BASM_2009_3_a10,
author = {Parascovia Syrbu},
title = {On $\pi$-quasigroups isotopic to abelian groups},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {109--117},
year = {2009},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2009_3_a10/}
}
Parascovia Syrbu. On $\pi$-quasigroups isotopic to abelian groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2009), pp. 109-117. http://geodesic.mathdoc.fr/item/BASM_2009_3_a10/
[1] Belousov V., “Parastrophic-orthogonal quasigroups”, Quasigroups and Related Systems, 14 (2005), 3–51 | MR
[2] Belousov V., Gwaramija A., “On Stein quasigroups”, Soobsh. Gruz. SSR, 44 (1966), 537–544 | MR | Zbl
[3] Bennett F. E., “The spectra of a variety of quasigroups and related combinatorial designs”, Discrete Math., 77 (2005), 29–50 | DOI | MR
[4] Bennett F. E., “Quasigroups”, The CRC handbook of combinatorial designs, eds. C. J. Colbourn, J. H. Dinitz, CRC Press, 1996 | MR