A note on a subclass of analytic functions defined by a differential operator
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 131-134
Cet article a éte moissonné depuis la source Math-Net.Ru
By means of the Sălăgean differential operator we define a new class $\mathcal{BS}(m,\mu,\alpha)$ involving functions $f\in\mathcal A_n$. Parallel results for some related classes including the class of starlike and convex functions respectively are also obtained.
@article{BASM_2009_2_a8,
author = {Alina Alb Lupa\c{s} and Adriana C\u{a}ta\c{s}},
title = {A note on a~subclass of analytic functions defined by a~differential operator},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {131--134},
year = {2009},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2009_2_a8/}
}
TY - JOUR AU - Alina Alb Lupaş AU - Adriana Cătaş TI - A note on a subclass of analytic functions defined by a differential operator JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2009 SP - 131 EP - 134 IS - 2 UR - http://geodesic.mathdoc.fr/item/BASM_2009_2_a8/ LA - en ID - BASM_2009_2_a8 ER -
%0 Journal Article %A Alina Alb Lupaş %A Adriana Cătaş %T A note on a subclass of analytic functions defined by a differential operator %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2009 %P 131-134 %N 2 %U http://geodesic.mathdoc.fr/item/BASM_2009_2_a8/ %G en %F BASM_2009_2_a8
Alina Alb Lupaş; Adriana Cătaş. A note on a subclass of analytic functions defined by a differential operator. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 131-134. http://geodesic.mathdoc.fr/item/BASM_2009_2_a8/
[1] Frasin B. A., Darus M., “On certain analytic univalent functions”, Internat. J. Math. and Math. Sci., 25:5 (2001), 305–310 | DOI | MR | Zbl
[2] Frasin B. F., Jahangiri Jay M., “A new and comprehensive class of analytic functions”, Analele Universităţii din Oradea, 15 (2008), 59–62 | MR | Zbl
[3] Sălăgean G. St., “Subclasses of univalent functions”, Lecture Notes in Math., 1013, Springer Verlag, Berlin, 1983, 362–372 | DOI | MR