On preradicals associated to principal functors of module categories, I
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 62-72
Cet article a éte moissonné depuis la source Math-Net.Ru
The preradicals associated to the functor $Hom_R(U,-)\colon R\text-Mod\to\mathcal Ab$ are revealed, their properties and the relations between these preradicals are studied.
@article{BASM_2009_2_a4,
author = {A. I. Kashu},
title = {On preradicals associated to principal functors of module {categories,~I}},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {62--72},
year = {2009},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2009_2_a4/}
}
A. I. Kashu. On preradicals associated to principal functors of module categories, I. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 62-72. http://geodesic.mathdoc.fr/item/BASM_2009_2_a4/
[1] Kashu A. I., Functors and torsions in categories of modules, Acad. of Sciences of RM, Inst. of Mathem., Chişinău, 1997 (in Russian) | MR
[2] Bican L., Kepka P., Nemec P., Rings, modules and preradicals, Marcel Dekker, New York, 1982 | MR | Zbl
[3] Golan J. S., Torsion theories, Longman Sci. Techn., New York, 1986 | MR | Zbl
[4] Kashu A. I., Radicals and torsions in modules, Ştiinţa, Chişinău, 1983 (in Russian) | MR
[5] Stenström B., Rings of quotients, Springer Verlag, Berlin, 1975 | MR | Zbl
[6] Kashu A. I., “On some bijections between ideals, classes of modules and preradicals of $R$-Mod”, Bulet. A. Ş. R. M. Matematica, 2001, no. 2(36), 101–110 | MR | Zbl