About group topologies of the primary Abelian group of finite period which coincide on a~subgroup and on the factor group
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 19-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be any Abelian group of the period $p^n$ and $G_1=\{g\in G\mid pg=0\}$, $G_2=\{g\in G\mid p^{n-1}g=0\}$. If $\tau$ and $\tau'$ are a metrizable, linear group topologies such that $G_2$ is a closed subgroup in each of topological groups $(G,\tau)$ and $(G,\tau')$, then $\tau|_{G_2}=\tau'|_{G_2}$ and $(G,\tau)/G_1=(G,\tau')/G_1$ if and only if there exists a group isomorphism $\varphi\colon G\to G$ such that the following conditions are true: 1. $\varphi(G_2)=G_2$; 2. $g-\varphi(g)\in G_1$ for any $g\in G$; 3. $\varphi\colon (G,\tau)\to(G,\tau')$ is a topological isomorphism.
@article{BASM_2009_2_a1,
     author = {V. I. Arnautov},
     title = {About group topologies of the primary {Abelian} group of finite period which coincide on a~subgroup and on the factor group},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {19--28},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2009_2_a1/}
}
TY  - JOUR
AU  - V. I. Arnautov
TI  - About group topologies of the primary Abelian group of finite period which coincide on a~subgroup and on the factor group
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 19
EP  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2009_2_a1/
LA  - en
ID  - BASM_2009_2_a1
ER  - 
%0 Journal Article
%A V. I. Arnautov
%T About group topologies of the primary Abelian group of finite period which coincide on a~subgroup and on the factor group
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 19-28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2009_2_a1/
%G en
%F BASM_2009_2_a1
V. I. Arnautov. About group topologies of the primary Abelian group of finite period which coincide on a~subgroup and on the factor group. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2009), pp. 19-28. http://geodesic.mathdoc.fr/item/BASM_2009_2_a1/

[1] Arnautov V. I., Glavatsky S. T., Mikhalev A. V., Introduction to the theory of topological rings and modules, Marcel Dekker, Inc., New York–Basel–Hong Kong, 1996 | MR | Zbl

[2] Kurosh A. G., The theory of groups, Nauka, Moscow, 1967 | MR | Zbl