Nash equilibria in the noncooperative informational extended games
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 96-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we will analyse informational extended games, i.e. games in which the players choose their actions simultaneously, with assumption that they have some information about the future strategies which will be chosen by other players. All informational extended games of this type will assume that players' payoff functions are common knowledge. Under these assumptions the last section will define the informational extended games and analyse Nash equilibrium and conditions of its existence. The essential result of this article is a theorem of Nash equilibrium existence in informational extended games with $n$ players. Our treatment is based on a standard fixed point theorem which will be stated without proof in the first section.
@article{BASM_2009_1_a9,
     author = {Ludmila Novac},
     title = {Nash equilibria in the noncooperative informational extended games},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {96--103},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2009_1_a9/}
}
TY  - JOUR
AU  - Ludmila Novac
TI  - Nash equilibria in the noncooperative informational extended games
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 96
EP  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2009_1_a9/
LA  - en
ID  - BASM_2009_1_a9
ER  - 
%0 Journal Article
%A Ludmila Novac
%T Nash equilibria in the noncooperative informational extended games
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 96-103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2009_1_a9/
%G en
%F BASM_2009_1_a9
Ludmila Novac. Nash equilibria in the noncooperative informational extended games. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 96-103. http://geodesic.mathdoc.fr/item/BASM_2009_1_a9/

[1] Kantorovici L. V., Akilov G. P., Funktsionalinyi analiz, Nauka, Moskva, 1984

[2] Danilov V. I., Lectures on fixed points, 1998 (in Russian); http://www.nes.ru/russian/research/pdf/1998/Danilov.pdf

[3] Hâncu Boris, Probleme de optimizare pe multe nivele, Partea I, CE USM, Chişinău, 2002