The distribution of a~planar random evolution with random start point
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 79-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the symmetric Markovian random evolution $\mathbf X(t)$ in the Euclidean plane $\mathbb R^2$ starting from a random point whose coordinates are the independent standard Gaussian random variables. The integral and series representations of the transition density of $\mathbf X(t)$ are obtained.
@article{BASM_2009_1_a7,
     author = {Alexander D. Kolesnik},
     title = {The distribution of a~planar random evolution with random start point},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {79--86},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2009_1_a7/}
}
TY  - JOUR
AU  - Alexander D. Kolesnik
TI  - The distribution of a~planar random evolution with random start point
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 79
EP  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2009_1_a7/
LA  - en
ID  - BASM_2009_1_a7
ER  - 
%0 Journal Article
%A Alexander D. Kolesnik
%T The distribution of a~planar random evolution with random start point
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 79-86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2009_1_a7/
%G en
%F BASM_2009_1_a7
Alexander D. Kolesnik. The distribution of a~planar random evolution with random start point. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 79-86. http://geodesic.mathdoc.fr/item/BASM_2009_1_a7/

[1] Gradshteyn I. S., Ryzhik I. M., Tables of Integrals, Sums, Series and Products, Academic Press, NY, 1980 | Zbl

[2] Kolesnik A. D., Orsingher E., “A planar random motion with an infinite number of directions controlled by the damped wave equation”, J. Appl. Probab., 42 (2005), 1168–1182 | DOI | MR | Zbl

[3] Masoliver J., Porrá J. M., Weiss G. H., “Some two and three-dimensional persistent random walks”, Physica A, 193 (1993), 469–482 | DOI

[4] Stadje W., “The exact probability distribution of a two-dimensional random walk”, J. Stat. Phys., 46 (1987), 207–216 | DOI | MR