The distribution of a planar random evolution with random start point
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 79-86
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the symmetric Markovian random evolution $\mathbf X(t)$ in the Euclidean plane $\mathbb R^2$ starting from a random point whose coordinates are the independent standard Gaussian random variables. The integral and series representations of the transition density of $\mathbf X(t)$ are obtained.
@article{BASM_2009_1_a7,
author = {Alexander D. Kolesnik},
title = {The distribution of a~planar random evolution with random start point},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {79--86},
year = {2009},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2009_1_a7/}
}
Alexander D. Kolesnik. The distribution of a planar random evolution with random start point. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 79-86. http://geodesic.mathdoc.fr/item/BASM_2009_1_a7/
[1] Gradshteyn I. S., Ryzhik I. M., Tables of Integrals, Sums, Series and Products, Academic Press, NY, 1980 | Zbl
[2] Kolesnik A. D., Orsingher E., “A planar random motion with an infinite number of directions controlled by the damped wave equation”, J. Appl. Probab., 42 (2005), 1168–1182 | DOI | MR | Zbl
[3] Masoliver J., Porrá J. M., Weiss G. H., “Some two and three-dimensional persistent random walks”, Physica A, 193 (1993), 469–482 | DOI
[4] Stadje W., “The exact probability distribution of a two-dimensional random walk”, J. Stat. Phys., 46 (1987), 207–216 | DOI | MR