On topological groupoids and multiple identities
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 67-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies some properties of $(n,m)$-homogeneous isotopies of medial topological groupoids. It also examines the relationship between paramediality and associativity. We extended some affirmations of the theory of topological groups on the class of topological $(n,m)$-homogeneous primitive goupoids with divisions.
@article{BASM_2009_1_a6,
     author = {Liubomir Chiriac and Liubomir Chiriac Jr. and Natalia Bobeica},
     title = {On topological groupoids and multiple identities},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {67--78},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2009_1_a6/}
}
TY  - JOUR
AU  - Liubomir Chiriac
AU  - Liubomir Chiriac Jr.
AU  - Natalia Bobeica
TI  - On topological groupoids and multiple identities
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 67
EP  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2009_1_a6/
LA  - en
ID  - BASM_2009_1_a6
ER  - 
%0 Journal Article
%A Liubomir Chiriac
%A Liubomir Chiriac Jr.
%A Natalia Bobeica
%T On topological groupoids and multiple identities
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 67-78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2009_1_a6/
%G en
%F BASM_2009_1_a6
Liubomir Chiriac; Liubomir Chiriac Jr.; Natalia Bobeica. On topological groupoids and multiple identities. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 67-78. http://geodesic.mathdoc.fr/item/BASM_2009_1_a6/

[1] Belousov V. D., Foundation of the theory of quasigroups and loops, Nauka, Moscow, 1967 (in Russian) | MR | Zbl

[2] Choban M. M., Kiriyak L. L., “The topological quasigroups with multiple identities”, Quasigroups and Related Systems, 9 (2002), 19–31 | MR | Zbl

[3] Engelking R., General topology, Polish Scientific Publishers, Warszawa, 1977 | MR | Zbl

[4] Hewitt E., Ross K. A., Abstract harmonic analysis. Vol. 1: Structure of topological groups. Integration theory. Group representation, Berlin, 1963 | MR

[5] Kyriyak L. L., Choban M. M., “About homogeneous isotopies and congruences”, Învaţamîntul universitar din Moldova la 70 ani, Vol. 3, Chişinău, 2000, 33

[6] Choban M. M., Kiriyak L. L., “The Medial Topological Quasigroup with Multiple identities”, The 4th Conference on Applied and Industrial Mathematics, CAIM, 1996 (Oradea)

[7] Chiriac L. L., “On Topological Quasigroups and Homogeneous Isotopies”, Analele Universităţii din Piteşti, Buletin Ştiinţific, Seria Matematică şi informatica, 2003, no. 9, 191–196

[8] Chiriac L. L., Bobeica N., “Some properties of the homogeneous isotopies”, Acta et Commentationes, Vol. III, Universitatea de Stat Tiraspol, Chişinău, 2006, 107–112

[9] Chiriac L. L., “On some generalization of commutativity in topological groupoids”, 6th Congress of Romanian Mathematicians (June 28 – July 4, 2007, Bucharest, Romania), 45

[10] Chiriac L. L., Bobeica N., “Paramedial topological groupoids”, 6th Congress of Romanian Mathematicians (June 28 – July 4, 2007, Bucharest, Romania), 25–26

[11] Chiriac L. L., “On topological primitive groupoid with divisions”, Acta et Commentationes, Vol. III, Universitatea de Stat Tiraspol, Chişinău, 2003, 175–178

[12] Kermit Sigmon, “Medial topological groupoids”, Aeq. Math., 1 (1968), 217–234 | DOI | MR