On free topological groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 58-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present article the existence and unicity of almost $(\mathcal U,\mathcal V)$-free group over given space, where $\mathcal U,\mathcal V$ are classes of topological groups is studied. If $\mathcal V$ is a quasivariety of compact topological groups and $\mathcal V\subseteq\mathcal U$, then these objects exist for any space. If $W$ is a quasivariety of compact groups, $\mathcal U=\mathcal V$ is the class of all pseudocompact subgroups of groups from $W$, then the almost $(\mathcal U,\mathcal V)$-free groups exist only for some special spaces.
@article{BASM_2009_1_a5,
     author = {Ina Ciobanu},
     title = {On free topological groups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {58--66},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2009_1_a5/}
}
TY  - JOUR
AU  - Ina Ciobanu
TI  - On free topological groups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 58
EP  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2009_1_a5/
LA  - en
ID  - BASM_2009_1_a5
ER  - 
%0 Journal Article
%A Ina Ciobanu
%T On free topological groups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 58-66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2009_1_a5/
%G en
%F BASM_2009_1_a5
Ina Ciobanu. On free topological groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 58-66. http://geodesic.mathdoc.fr/item/BASM_2009_1_a5/

[1] Comfort W. W., Hofmann K.-H., Remus D., “Topological groups and semigroups”, Recent Progress in General Topology, eds. Hušek M., van Mill J., Elssevire Sciences Publishers B.V., 1992, 57–144 | MR

[2] Comfort W. W., van Mill J., “On the existence of free topological groups”, Topology Appl., 29 (1988), 245–269 | DOI | MR

[3] Comfort W. W., van Mill J., “Concerning connected, pseudocompact Abelian groups”, Topology Appl., 33 (1989), 21–45 | DOI | MR | Zbl

[4] Engelking R., General Topology, PWN, Warszawa, 1977 | MR | Zbl

[5] Fokkink R., “A note on pseudocompact groups”, Proc. Amer. Math. Soc., 107 (1989), 569–571 | DOI | MR | Zbl

[6] Roelke W., Dierolf S., Uniform structures of topological groups and their quotients, McGraw-Hill, New York, 1981

[7] Ursul M. I., “Imbeddings of locally precompact groups in locally pseudocompact ones”, Izvestia Akad. Nauk Mold. SSR, Fizika–Tehnica–Matematica, 1989, no. 3, 54–56 (in Russian) | MR | Zbl