Global attractors of non-autonomous difference equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 45-57
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is devoted to the study of global attractors of quasi-linear non-autonomous difference equations. The results obtained are applied to the study of a triangular economic growth model $T\colon\mathbb R^2_+\to\mathbb R^2_+$ recently developed in S. Brianzoni, C. Mammana and E. Michetti [1].
@article{BASM_2009_1_a4,
author = {D. Cheban and C. Mammana and E. Michetti},
title = {Global attractors of non-autonomous difference equations},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {45--57},
publisher = {mathdoc},
number = {1},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2009_1_a4/}
}
TY - JOUR AU - D. Cheban AU - C. Mammana AU - E. Michetti TI - Global attractors of non-autonomous difference equations JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2009 SP - 45 EP - 57 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2009_1_a4/ LA - en ID - BASM_2009_1_a4 ER -
D. Cheban; C. Mammana; E. Michetti. Global attractors of non-autonomous difference equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 45-57. http://geodesic.mathdoc.fr/item/BASM_2009_1_a4/