Applications of the integral operator to the class of meromorphic functions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 37-44
Cet article a éte moissonné depuis la source Math-Net.Ru
By using the Sălăgean integral operator $I^nf(z)$, $z\in U$, we introduce a class of holomorphic functions denoted by $\Sigma_k(\alpha,n)$ and we obtain an inclusion relation related to this class and some differential subordinations.
@article{BASM_2009_1_a3,
author = {Camelia M\u{a}d\u{a}lina B\u{a}l\u{a}e\c{t}i},
title = {Applications of the integral operator to the class of meromorphic functions},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {37--44},
year = {2009},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2009_1_a3/}
}
TY - JOUR AU - Camelia Mădălina Bălăeţi TI - Applications of the integral operator to the class of meromorphic functions JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2009 SP - 37 EP - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASM_2009_1_a3/ LA - en ID - BASM_2009_1_a3 ER -
Camelia Mădălina Bălăeţi. Applications of the integral operator to the class of meromorphic functions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 37-44. http://geodesic.mathdoc.fr/item/BASM_2009_1_a3/
[1] Hallenbeck D. J., Ruschweyh S., “Subordination by convex functions”, Proc. Amer. Soc., 52 (1975), 191–195 | DOI | MR | Zbl
[2] Miller S. S., Mocanu P. T., Differential Subordinations. Theory and Applications, Marcel Dekker Inc., New York–Basel, 2000 | MR
[3] Miller S. S., Mocanu P. T., “On some classes of first-order differential subordinations”, Michigan Math. J., 32 (1985), 185–195 | DOI | MR | Zbl
[4] Oros G. I., “A new application of Sălăgean differential operator at the class of meromorphic functions”, An. Univ. Oradea Fasc. Mat., X (2004), 123–132 | MR
[5] Sălăgean G. St., “Subclasses of univalent functions”, Lecture Notes in Math., 1013, Springer Verlag, 1983, 362–372 | DOI | MR