The graded Jacobson radical of associative rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 31-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a consistent definition for the graded Jacobson radical for group graded rings without unity. We compare the graded Jacobson radical for rings with unity and those without. We find that for group graded rings, the descriptions are equivalent.
@article{BASM_2009_1_a2,
     author = {B. J. Gardner and A. Plant},
     title = {The graded {Jacobson} radical of associative rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {31--36},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2009_1_a2/}
}
TY  - JOUR
AU  - B. J. Gardner
AU  - A. Plant
TI  - The graded Jacobson radical of associative rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2009
SP  - 31
EP  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2009_1_a2/
LA  - en
ID  - BASM_2009_1_a2
ER  - 
%0 Journal Article
%A B. J. Gardner
%A A. Plant
%T The graded Jacobson radical of associative rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2009
%P 31-36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2009_1_a2/
%G en
%F BASM_2009_1_a2
B. J. Gardner; A. Plant. The graded Jacobson radical of associative rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2009), pp. 31-36. http://geodesic.mathdoc.fr/item/BASM_2009_1_a2/

[1] Năstăsescu C., Van Oystaeyen F., Graded Ring Theory, North-Holland, Amsterdam–New York, 1982 | MR

[2] Cohen M., Rowen L. H., “Group graded rings”, Commun. Algebra, 11 (1983), 1253–1270 | DOI | MR | Zbl

[3] Năstăsescu C., “Group rings of graded rings”, J. Pure Appl. Algebra, 33 (1984), 313–335 | DOI | MR

[4] Cohen M., Montgomery S., “Group-graded rings, smash products, and group actions”, Trans. Amer. Math. Soc., 282 (1984), 237–258 | DOI | MR | Zbl

[5] Beattie M. A., “A generalization of the smash product of a graded ring”, J. Pure Appl. Algebra, 51 (1988), 219–226 | DOI | MR

[6] Karpilovsky G., The Jacobson Radical of Classical Rings, Wiley and Sons, New York, 1991 | MR | Zbl

[7] Abrams G., Menini C., “Embedding modules in graded modules over a semigroup-graded ring”, Comm. Algebra, 29 (2001), 2611–2625 | DOI | MR | Zbl

[8] Kertész A., Vorlesungen über artinsche Ringe, Akadémiai Kiadó, Budapest, 1968 | MR | Zbl

[9] Balaba I. N., “Special radicals of graded rings”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 2004, no. 1(44), 26–33 | MR | Zbl

[10] Hungerford T. W., Algebra, Springer, New York, 1974 | MR

[11] Gardner B. J., Wiegandt R., Radical Theory of Rings, Marcel Dekker, New York, 2004 | MR | Zbl

[12] Bergman G. M., On the Jacobson radical of graded rings, Unpublished typescript