Queuing system evolution in phase merging scheme
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 83-88
Cet article a éte moissonné depuis la source Math-Net.Ru
We study asymptotic average scheme for semi-Markov queuing systems using compensating operator of the corresponding extended Markov process. The peculiarity of our queuing system is that the series scheme is considered with phase merging procedure.
@article{BASM_2008_3_a8,
author = {V. Korolyk and Gh. Mishkoy and A. Mamonova and Iu. Griza},
title = {Queuing system evolution in phase merging scheme},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {83--88},
year = {2008},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2008_3_a8/}
}
TY - JOUR AU - V. Korolyk AU - Gh. Mishkoy AU - A. Mamonova AU - Iu. Griza TI - Queuing system evolution in phase merging scheme JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2008 SP - 83 EP - 88 IS - 3 UR - http://geodesic.mathdoc.fr/item/BASM_2008_3_a8/ LA - en ID - BASM_2008_3_a8 ER -
V. Korolyk; Gh. Mishkoy; A. Mamonova; Iu. Griza. Queuing system evolution in phase merging scheme. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 83-88. http://geodesic.mathdoc.fr/item/BASM_2008_3_a8/
[1] Korolyuk V.S., Limnios N., Stochastic Systems in Merging Phase Space, World Scientific, 2005 | Zbl
[2] Anisimov V.V., Lebedev E.A., Stochastic Queuing Networks. Markov Models, K. Lybid, 1992 (in Ukrainian)
[3] Korolyuk V.S., Stochastic models of systems, Kluwer, 1999
[4] Lebedev E.A., “On limit theorem for stochastic networks and its application”, Theory of Probability and Math. St., 2002, 94–98 (in Ukrainian)
[5] Mamonova G.V., “Ekappaploited queuing system $[SM|M|\infty]^N$ type in average scheme”, Proceedings of the 31th Annual Congress of the American Proceeding of the Applied Mathematics and Mechanics Institute, vol. 10, 2005, 135–144 (in Ukrainian) | MR | Zbl