The sets of the classes $\widetilde M_{p,k}$ and their subsets
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 76-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the sets of the classes $\widetilde M_{p,k}$ having the Darboux property in the generalized metric spaces $(E,l)$ are considered. Certain properties for these sets and their subsets in the generalized metric spaces $(E,l)$ and in the Cartesian space have been given here.
@article{BASM_2008_3_a7,
     author = {Tadeusz Konik},
     title = {The sets of the classes $\widetilde M_{p,k}$ and their subsets},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {76--82},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2008_3_a7/}
}
TY  - JOUR
AU  - Tadeusz Konik
TI  - The sets of the classes $\widetilde M_{p,k}$ and their subsets
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 76
EP  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2008_3_a7/
LA  - en
ID  - BASM_2008_3_a7
ER  - 
%0 Journal Article
%A Tadeusz Konik
%T The sets of the classes $\widetilde M_{p,k}$ and their subsets
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 76-82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2008_3_a7/
%G en
%F BASM_2008_3_a7
Tadeusz Konik. The sets of the classes $\widetilde M_{p,k}$ and their subsets. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 76-82. http://geodesic.mathdoc.fr/item/BASM_2008_3_a7/

[1] Cha̧dzyńska A., “On some classes of sets related to the symmetry of the tangency relation in a metric space”, Ann. Soc. Math. Polon., Comm. Math., 16 (1972), 219–228 | MR

[2] Goła̧b S., Moszner Z., “Sur le contact des courbes dans les espaces metriques généraux”, Colloq. Math., 10 (1963), 105–311 | MR

[3] Grochulski J., “Some properties of tangency relations”, Demonstratio Math., 28 (1995), 361–367 | MR | Zbl

[4] Grochulski J., Konik T., Tkacz M., “On the tangency of sets in metric spaces”, Ann. Polon. Math., 38 (1980), 121–131 | MR | Zbl

[5] Konik T., “On the reflexivity symmetry and transitivity of the tangency relations of sets of the class $\widetilde{M}_{p,k}$”, J. Geom., 52 (1995), 142–151 | DOI | MR | Zbl

[6] Konik T., “The compatibility of the tangency relations of sets in generalized metric spaces”, Mat. Vesnik, 50 (1998), 17–22 | MR | Zbl

[7] Konik T., “On the compatibility and the equivalence of the tangency relations of sets of the classes $A_{p,k}^*$”, J. Geom., 63 (1998), 124–133 | DOI | MR | Zbl

[8] Konik T., “On some tangency relation of sets”, Publ. Math. Debrecen, 55:3-4 (1999), 411–419 | MR | Zbl

[9] Konik T., “On the sets of the classes $\widetilde{M}_{p,k}$”, Demonstratio Math., 33:2 (2000), 407–417 | MR | Zbl

[10] Konik T., “O styczności zbiorów w uogólnionych przestrzeniach metrycznych”, Wydawnictwo Politechniki Czȩstochowskiej, Seria Monografie, 77 (2001), 1–71 | MR

[11] Konik T., “On some problem of the tangency of sets”, Bull. Acad. Sci. Rep. Moldova, Matematica, 2001, no. 1(35), 51–60 | MR | Zbl

[12] Waliszewski W., “On the tangency of sets in generalized metric spaces”, Ann. Polon. Math., 28 (1973), 275–284 | MR | Zbl