Classification of $GL(2,\mathbb R)$-orbit's dimensions for the differential system with cubic nonlinearities
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 116-118
Voir la notice de l'article provenant de la source Math-Net.Ru
Center-affine invariant conditions for $GL(2,\mathbb R)$-orbit's dimensions are defined for two-dimensional autonomous system of differential polynomial equations with cubic nonlinearities.
@article{BASM_2008_3_a13,
author = {V. Orlov},
title = {Classification of $GL(2,\mathbb R)$-orbit's dimensions for the differential system with cubic nonlinearities},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {116--118},
publisher = {mathdoc},
number = {3},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2008_3_a13/}
}
TY - JOUR AU - V. Orlov TI - Classification of $GL(2,\mathbb R)$-orbit's dimensions for the differential system with cubic nonlinearities JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2008 SP - 116 EP - 118 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2008_3_a13/ LA - en ID - BASM_2008_3_a13 ER -
%0 Journal Article %A V. Orlov %T Classification of $GL(2,\mathbb R)$-orbit's dimensions for the differential system with cubic nonlinearities %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2008 %P 116-118 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2008_3_a13/ %G en %F BASM_2008_3_a13
V. Orlov. Classification of $GL(2,\mathbb R)$-orbit's dimensions for the differential system with cubic nonlinearities. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 116-118. http://geodesic.mathdoc.fr/item/BASM_2008_3_a13/