Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2008_3_a13, author = {V. Orlov}, title = {Classification of $GL(2,\mathbb R)$-orbit's dimensions for the differential system with cubic nonlinearities}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {116--118}, publisher = {mathdoc}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2008_3_a13/} }
TY - JOUR AU - V. Orlov TI - Classification of $GL(2,\mathbb R)$-orbit's dimensions for the differential system with cubic nonlinearities JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2008 SP - 116 EP - 118 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2008_3_a13/ LA - en ID - BASM_2008_3_a13 ER -
%0 Journal Article %A V. Orlov %T Classification of $GL(2,\mathbb R)$-orbit's dimensions for the differential system with cubic nonlinearities %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2008 %P 116-118 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2008_3_a13/ %G en %F BASM_2008_3_a13
V. Orlov. Classification of $GL(2,\mathbb R)$-orbit's dimensions for the differential system with cubic nonlinearities. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 116-118. http://geodesic.mathdoc.fr/item/BASM_2008_3_a13/
[1] Popa M.N., “Algebraic methods for differential systems”, Editura the Flower Power, Universitatea din Piteşti, Seria Matematică Aplicată şi Industrială, 15 (2004) (in Romanian) | MR
[2] Chebanu V.M., “Minimal polynomial basis of comitants of cubic differential system”, Differential equations, 21:3 (1985), 541–543 (in Russian) | Zbl