Classification of $GL(2,\mathbb R)$-orbit's dimensions for the differential system with cubic nonlinearities
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 116-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

Center-affine invariant conditions for $GL(2,\mathbb R)$-orbit's dimensions are defined for two-dimensional autonomous system of differential polynomial equations with cubic nonlinearities.
@article{BASM_2008_3_a13,
     author = {V. Orlov},
     title = {Classification of $GL(2,\mathbb R)$-orbit's dimensions for the differential system with cubic nonlinearities},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {116--118},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2008_3_a13/}
}
TY  - JOUR
AU  - V. Orlov
TI  - Classification of $GL(2,\mathbb R)$-orbit's dimensions for the differential system with cubic nonlinearities
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 116
EP  - 118
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2008_3_a13/
LA  - en
ID  - BASM_2008_3_a13
ER  - 
%0 Journal Article
%A V. Orlov
%T Classification of $GL(2,\mathbb R)$-orbit's dimensions for the differential system with cubic nonlinearities
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 116-118
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2008_3_a13/
%G en
%F BASM_2008_3_a13
V. Orlov. Classification of $GL(2,\mathbb R)$-orbit's dimensions for the differential system with cubic nonlinearities. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 116-118. http://geodesic.mathdoc.fr/item/BASM_2008_3_a13/

[1] Popa M.N., “Algebraic methods for differential systems”, Editura the Flower Power, Universitatea din Piteşti, Seria Matematică Aplicată şi Industrială, 15 (2004) (in Romanian) | MR

[2] Chebanu V.M., “Minimal polynomial basis of comitants of cubic differential system”, Differential equations, 21:3 (1985), 541–543 (in Russian) | Zbl