Differentially prime, quasi-prime and $\Delta-MP$-modules
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 112-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of differentially prime, quasi-prime and $\Delta-MP$-modules introduced by the author are investigated. The results obtained are module analogues of the well-known facts on differentially prime and quasi-prime ideals of differential rings. The principal constructions are based on the concept of relative multiplicatively closed subset of the differential module.
@article{BASM_2008_3_a12,
     author = {I. O. Melnyk},
     title = {Differentially prime, quasi-prime and $\Delta-MP$-modules},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {112--115},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2008_3_a12/}
}
TY  - JOUR
AU  - I. O. Melnyk
TI  - Differentially prime, quasi-prime and $\Delta-MP$-modules
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 112
EP  - 115
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2008_3_a12/
LA  - en
ID  - BASM_2008_3_a12
ER  - 
%0 Journal Article
%A I. O. Melnyk
%T Differentially prime, quasi-prime and $\Delta-MP$-modules
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 112-115
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2008_3_a12/
%G en
%F BASM_2008_3_a12
I. O. Melnyk. Differentially prime, quasi-prime and $\Delta-MP$-modules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 112-115. http://geodesic.mathdoc.fr/item/BASM_2008_3_a12/

[1] Kolchin E., Differential algebra and algebraic groups, Academic Press, New York, 1973 | MR | Zbl

[2] Khadjiev Dj., Çall{\i}alp F., “On a differential analog of the prime-radical and properties of the lattice of the radical differential ideals in associative differential rings”, Tr. J. of Math., 20:4 (1996), 571–582 | MR | Zbl

[3] Lu C., “Unions of prime submodules”, Houston J. Math., 23:2 (1997), 203–213 | MR | Zbl

[4] Andrunakievich V.A., “Prime modules and the Baer radical”, Sibirsk. Mat. Zh., 2 (1961), 801–806 (in Russian) | MR | Zbl

[5] Keigher W., “Quasi-prime ideals in differential rings”, Houston J. Math., 4:3 (1978), 379–388 | MR | Zbl

[6] Verschoren A., “Differential rings with polynomial identities I (Quasiprime ideals in noncommutative differential rings)”, Bull. Soc. Math. Belg., Ser. B, 35:2 (1983), 227–245 | MR

[7] Stenström B., Rings of quotients: an introduction to methods of ring theory, Springer-Verlag, Berlin, New-York, 1975 | MR | Zbl

[8] Nowicki A., “Quasi-prime and d-prime ideals in commutative differential rings”, Colloq. math., (PRL), 47:2 (1982), 179–184 | MR | Zbl