Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2008_3_a12, author = {I. O. Melnyk}, title = {Differentially prime, quasi-prime and $\Delta-MP$-modules}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {112--115}, publisher = {mathdoc}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2008_3_a12/} }
I. O. Melnyk. Differentially prime, quasi-prime and $\Delta-MP$-modules. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 112-115. http://geodesic.mathdoc.fr/item/BASM_2008_3_a12/
[1] Kolchin E., Differential algebra and algebraic groups, Academic Press, New York, 1973 | MR | Zbl
[2] Khadjiev Dj., Çall{\i}alp F., “On a differential analog of the prime-radical and properties of the lattice of the radical differential ideals in associative differential rings”, Tr. J. of Math., 20:4 (1996), 571–582 | MR | Zbl
[3] Lu C., “Unions of prime submodules”, Houston J. Math., 23:2 (1997), 203–213 | MR | Zbl
[4] Andrunakievich V.A., “Prime modules and the Baer radical”, Sibirsk. Mat. Zh., 2 (1961), 801–806 (in Russian) | MR | Zbl
[5] Keigher W., “Quasi-prime ideals in differential rings”, Houston J. Math., 4:3 (1978), 379–388 | MR | Zbl
[6] Verschoren A., “Differential rings with polynomial identities I (Quasiprime ideals in noncommutative differential rings)”, Bull. Soc. Math. Belg., Ser. B, 35:2 (1983), 227–245 | MR
[7] Stenström B., Rings of quotients: an introduction to methods of ring theory, Springer-Verlag, Berlin, New-York, 1975 | MR | Zbl
[8] Nowicki A., “Quasi-prime and d-prime ideals in commutative differential rings”, Colloq. math., (PRL), 47:2 (1982), 179–184 | MR | Zbl