Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2008_3_a11, author = {Valery Dryuma}, title = {Four-dimensional {Ricci-flat} space defined by the {KP-equation}}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {108--111}, publisher = {mathdoc}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2008_3_a11/} }
Valery Dryuma. Four-dimensional Ricci-flat space defined by the KP-equation. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 108-111. http://geodesic.mathdoc.fr/item/BASM_2008_3_a11/
[1] Paterson E.M., Walker A.G., “Riemann extensions”, Quart. J. Math. Oxford, 3 (1952), 19–28 | DOI | MR
[2] Dryuma V., “The Riemann and Einstein-Weyl geometries in the theory of ODE's, their applications and all that”, New Trends in Integrability and Partial Solvability, eds. A. B. Shabat et al., Kluwer Academic Publishers, 2004, 115–156 ; , 11 March, 2003, 1–37 arXiv: nlin: SI/0303023 | MR | Zbl
[3] Dryuma V., “On the Riemann Extension of the Gödel space-time metric”, Buletinul A. S. R. M., Matematica, 2005, no. 3(49), 43–62 | MR | Zbl
[4] Dryuma V., Riemann Extension in theory of the first order systems of differential equations, v1, 25 Oct 2005, p. 1–21 arXiv:math.DG/0510526 | MR
[5] Dryuma V., Eight-dimensional the Ricci-flat Riemann space related with the KP-equation, v1, 2 Oct 2008, p. 1–5, v2, 15 Oct 2008, p. 1–5 arXiv: 0810.0346
[6] Konopelchenko B.G., Quantum deformations of associative algebras and integrable systems},, v2 [nlin. SI] 28 Apr, 2008, p. 1–24 arXiv: 0802.3022