Four-dimensional Ricci-flat space defined by the KP-equation
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 108-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

Four-dimensional affinely connected Ricci-flat space depending of solutions of the Kadomtsev–Petviashvili equation is constructed. Conditions of metrizabilty of corresponding connection are investigated. Its properties are discussed.
@article{BASM_2008_3_a11,
     author = {Valery Dryuma},
     title = {Four-dimensional {Ricci-flat} space defined by the {KP-equation}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {108--111},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2008_3_a11/}
}
TY  - JOUR
AU  - Valery Dryuma
TI  - Four-dimensional Ricci-flat space defined by the KP-equation
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 108
EP  - 111
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2008_3_a11/
LA  - en
ID  - BASM_2008_3_a11
ER  - 
%0 Journal Article
%A Valery Dryuma
%T Four-dimensional Ricci-flat space defined by the KP-equation
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 108-111
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2008_3_a11/
%G en
%F BASM_2008_3_a11
Valery Dryuma. Four-dimensional Ricci-flat space defined by the KP-equation. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 108-111. http://geodesic.mathdoc.fr/item/BASM_2008_3_a11/

[1] Paterson E.M., Walker A.G., “Riemann extensions”, Quart. J. Math. Oxford, 3 (1952), 19–28 | DOI | MR

[2] Dryuma V., “The Riemann and Einstein-Weyl geometries in the theory of ODE's, their applications and all that”, New Trends in Integrability and Partial Solvability, eds. A. B. Shabat et al., Kluwer Academic Publishers, 2004, 115–156 ; , 11 March, 2003, 1–37 arXiv: nlin: SI/0303023 | MR | Zbl

[3] Dryuma V., “On the Riemann Extension of the Gödel space-time metric”, Buletinul A. S. R. M., Matematica, 2005, no. 3(49), 43–62 | MR | Zbl

[4] Dryuma V., Riemann Extension in theory of the first order systems of differential equations, v1, 25 Oct 2005, p. 1–21 arXiv:math.DG/0510526 | MR

[5] Dryuma V., Eight-dimensional the Ricci-flat Riemann space related with the KP-equation, v1, 2 Oct 2008, p. 1–5, v2, 15 Oct 2008, p. 1–5 arXiv: 0810.0346

[6] Konopelchenko B.G., Quantum deformations of associative algebras and integrable systems},, v2 [nlin. SI] 28 Apr, 2008, p. 1–24 arXiv: 0802.3022