Exact solutions for a~rotational flow of generalized second grade fluids through a~circular cylinder
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 9-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note the velocity field and the associated tangential stress corresponding to the rotational flow of a generalized second grade fluid within an infinite circular cylinder are determined by means of the Laplace and Hankel transforms. At time $t=0$ the fluid is at rest and the motion is produced by the rotation of the cylinder, around its axis, with the angular velocity $\Omega t$. The velocity field and the adequate shear stress are presented under integral and series forms in terms of the generalized $G$-functions. Furthermore, they are presented as a sum between the Newtonian solutions and the adequate non-Newtonian contributions. The corresponding solutions for the ordinary second grade fluid and Newtonian fluid are obtained as particular cases of our solutions for $\beta=1$, respectively $\alpha=0$ and $\beta=1$.
@article{BASM_2008_3_a1,
     author = {Amir Mahmood and Saifullah and Qammar Rubab},
     title = {Exact solutions for a~rotational flow of generalized second grade fluids through a~circular cylinder},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {9--17},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2008_3_a1/}
}
TY  - JOUR
AU  - Amir Mahmood
AU  - Saifullah
AU  - Qammar Rubab
TI  - Exact solutions for a~rotational flow of generalized second grade fluids through a~circular cylinder
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 9
EP  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2008_3_a1/
LA  - en
ID  - BASM_2008_3_a1
ER  - 
%0 Journal Article
%A Amir Mahmood
%A Saifullah
%A Qammar Rubab
%T Exact solutions for a~rotational flow of generalized second grade fluids through a~circular cylinder
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 9-17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2008_3_a1/
%G en
%F BASM_2008_3_a1
Amir Mahmood; Saifullah; Qammar Rubab. Exact solutions for a~rotational flow of generalized second grade fluids through a~circular cylinder. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2008), pp. 9-17. http://geodesic.mathdoc.fr/item/BASM_2008_3_a1/

[1] Sheng Y.Z., Zhong L.J., “Numerical research on the coherent structure in the viscoelastic second-order mixing layers”, Appl. Math. Mech., 8 (1998), 717–723

[2] Fetecau C., Fetecau Corina, Vieru D., “On some helical flows of Oldroyd-B fluids”, Acta Mechanica, 189 (2007), 53–63 | DOI | Zbl

[3] Bagley R.L., “A theoretical basis for the application of fractional calculus to viscoelasticity”, Journal of Rheology, 27 (1983), 201–210 | DOI | Zbl

[4] Yu H.G., Qi H.J., Qun L.C., “General second order fluid flow in a pipe”, Appl. Math. Mech., 16 (1995), 825–831 | DOI

[5] Chang T.W., Yu X.M., “The impulsive motion of flat plate in a generalized second grade fluid”, Mech. Research Comm., 29 (2002), 3–9 | DOI | MR

[6] Fang S., Chang T.W., Hua Z.Y., Masuoka T., “Decay of vortex velocity and diffusion of temperature in a generalized second grade fluid”, Appl. Math. Mech., 25 (2004), 1151–1159 | DOI | Zbl

[7] Hilfer R., Applications of Fractional Calculus in Physics, World Scientific Press, Singapore, 2000 | MR

[8] Dunn J.E., Rajagopal K.R., “Fluids of differential type: critical review and thermodynamic analysis”, Int. J. Eng. Sci., 33 (1995), 689–729 | DOI | MR | Zbl

[9] Tong D., Liu Y., “Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe”, Int. J. Eng. Sci., 43 (2005), 281–289 | DOI | MR