Resolvability of some special algebras with topologies
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 92-105
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be an infinite $I_nP$-$n$-groupoid. We construct a disjoint family $\{B_{\mu}:\mu\in M\}$ of non-empty subsets of $G$ such that the sets $\{B_{\mu}\}$ are dense in all Choban's totally bounded topologies on $G$, $|M|=|G|$, $G=\bigcup\{B_{\mu}:\mu\in M\}$ and $\bigcup_{k=1}^n\Delta_{\varphi}\omega(K^{k-1},G\setminus B_{\mu},K^{n-k})\ne G$ for all $\mu\in M$ and every finite subsets $K$ of $G$. In particular, we continue the line of research from [6, 9].
@article{BASM_2008_2_a8,
author = {Liubomir Chiriac},
title = {Resolvability of some special algebras with topologies},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {92--105},
publisher = {mathdoc},
number = {2},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2008_2_a8/}
}
Liubomir Chiriac. Resolvability of some special algebras with topologies. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 92-105. http://geodesic.mathdoc.fr/item/BASM_2008_2_a8/