Moments of the Markovian random evolutions in two and four dimensions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 68-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Closed-form expressions for the mixed moments of the Markovian random evolutions in the spaces $\mathbb R^2$ and $\mathbb R^4$, are obtained. The moments of the Euclidean distance from the origin at any time $t>0$ are also presented.
@article{BASM_2008_2_a6,
     author = {Alexander D. Kolesnik},
     title = {Moments of the {Markovian} random evolutions in two and four dimensions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {68--80},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2008_2_a6/}
}
TY  - JOUR
AU  - Alexander D. Kolesnik
TI  - Moments of the Markovian random evolutions in two and four dimensions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 68
EP  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2008_2_a6/
LA  - en
ID  - BASM_2008_2_a6
ER  - 
%0 Journal Article
%A Alexander D. Kolesnik
%T Moments of the Markovian random evolutions in two and four dimensions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 68-80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2008_2_a6/
%G en
%F BASM_2008_2_a6
Alexander D. Kolesnik. Moments of the Markovian random evolutions in two and four dimensions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 68-80. http://geodesic.mathdoc.fr/item/BASM_2008_2_a6/

[1] Gradshteyn I.S., Ryzhik I.M., Tables of Integrals, Sums, Series and Products, Academic Press, NY, 1980 | Zbl

[2] Kolesnik A.D., “Random motions at finite speed in higher dimensions”, J. Stat. Phys., 131 (2008), 1039–1065 | DOI | MR | Zbl

[3] Kolesnik A.D., “A note on planar random motion at finite speed”, J. Appl. Probab., 44 (2007), 838–842 | DOI | MR | Zbl

[4] Kolesnik A.D., “A four-dimensional random motion at finite speed”, J. Appl. Probab., 43 (2006), 1107–1118 | DOI | MR | Zbl

[5] Kolesnik A.D., Orsingher E., “A planar random motion with an infinite number of directions controlled by the damped wave equation”, J. Appl. Probab., 42 (2005), 1168–1182 | DOI | MR | Zbl

[6] Masoliver J., Porrá J.M., Weiss G.H., “Some two and three-dimensional persistent random walks”, Physica A, 193 (1993), 469–482 | DOI

[7] Stadje W., “The exact probability distribution of a two-dimensional random walk”, J. Stat. Phys., 46 (1987), 207–216 | DOI | MR

[8] Stadje W., “Exact probability distributions for non-correlated random walk models”, J. Stat. Phys., 56 (1989), 415–435 | DOI | MR | Zbl