Classification of $Aff(2,\mathbb R)$-orbit's dimensions for quadratic differential system
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 122-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Affine invariant conditions for $Aff(2,\mathbb R)$-orbit's dimensions are defined for two-dimensional autonomous quadratic differential system.
@article{BASM_2008_2_a13,
     author = {N. Gherstega and V. Orlov},
     title = {Classification of $Aff(2,\mathbb R)$-orbit's dimensions for quadratic differential system},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {122--126},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2008_2_a13/}
}
TY  - JOUR
AU  - N. Gherstega
AU  - V. Orlov
TI  - Classification of $Aff(2,\mathbb R)$-orbit's dimensions for quadratic differential system
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 122
EP  - 126
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2008_2_a13/
LA  - en
ID  - BASM_2008_2_a13
ER  - 
%0 Journal Article
%A N. Gherstega
%A V. Orlov
%T Classification of $Aff(2,\mathbb R)$-orbit's dimensions for quadratic differential system
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 122-126
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2008_2_a13/
%G en
%F BASM_2008_2_a13
N. Gherstega; V. Orlov. Classification of $Aff(2,\mathbb R)$-orbit's dimensions for quadratic differential system. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 122-126. http://geodesic.mathdoc.fr/item/BASM_2008_2_a13/

[1] Popa M.N., “Algebraic methods for differential systems”, Editura the Flower Power, Universitatea din Piteşti, Seria Matematică Aplicată şi Industrială, 15 (2004) (in Romanian) | MR

[2] Sibirsky K.S., Introduction to algebraic theory of invariants of differential equations, Stiinta, Chisinau, 1982 (in Russian, published in English in 1988) | MR

[3] Olver P.J., Classical Invariant Theory, London Mathematical Society student texts, 44, Cambridge University Press, 1999 | MR

[4] Boularas D., Calin Iu., Timochouk L., Vulpe N., T-comitants of quadratic systems: a study via the translation invariants, Report 96-90, Delft 1996, Delft University of Technology

[5] Schlomiuk D., Vulpe N., “Geometry of quadratic differential systems in the neighborhood of infinity”, J. Differential Equations, 215 (2005), 357–400 | DOI | MR | Zbl

[6] Boularas D., “Computation of affine covariants of quadratic bivariate differential systems”, J. Complexity, 16:4 (2000), 691–715 | DOI | MR | Zbl