The Euler Tour of $n$-Dimensional Manifold with Positive Genus
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 110-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper [1] it is proved that abstract cubic $n$-dimensional torus [2] possesses a directed Euler tour of the same dimension. The result prompts to a new (virtual) device for transmission and reception of information. In the present paper it is shown that every abstract cubic $n$-dimensional manifold without borders, of positive genus possesses a $n$-dimensional directed Euler tour. This result has practical application.
@article{BASM_2008_2_a10,
     author = {Cataranciuc Sergiu and Bujac-Leisz Mariana and Soltan Petru},
     title = {The {Euler} {Tour} of $n${-Dimensional} {Manifold} with {Positive} {Genus}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {110--113},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2008_2_a10/}
}
TY  - JOUR
AU  - Cataranciuc Sergiu
AU  - Bujac-Leisz Mariana
AU  - Soltan Petru
TI  - The Euler Tour of $n$-Dimensional Manifold with Positive Genus
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 110
EP  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2008_2_a10/
LA  - en
ID  - BASM_2008_2_a10
ER  - 
%0 Journal Article
%A Cataranciuc Sergiu
%A Bujac-Leisz Mariana
%A Soltan Petru
%T The Euler Tour of $n$-Dimensional Manifold with Positive Genus
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 110-113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2008_2_a10/
%G en
%F BASM_2008_2_a10
Cataranciuc Sergiu; Bujac-Leisz Mariana; Soltan Petru. The Euler Tour of $n$-Dimensional Manifold with Positive Genus. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2008), pp. 110-113. http://geodesic.mathdoc.fr/item/BASM_2008_2_a10/

[1] Bujac M., “The Application of Two-Dimensional Torus in the Transmission of Information”, Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity, vol. 4, Mediamira Science Publisher, Cluj-Napoca, 2006, 9–17

[2] Bujac M., “On the Multidimensional Directed Euler Tour of Cubic Manifold”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2006, no. 1(50), 15–22 | MR | Zbl

[3] Bujac M., Cataranciuc S., Soltan P., “On the Division of Abstract Manifolds in Cubes”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2006, no. 2(51), 29–34 | MR | Zbl

[4] Bujac M., Soltan P., “The Abstract Multidimensional Varieties and Their Classification”, Revue d'analyse numerique et de theorie de l'approximation, Cluj-Napoca, 33:2 (2004), 163–165 | MR | Zbl

[5] Soltan P., “On the Homologies on Multi-ary Relations and Oriented Hipergraphs”, Studii în metode de analiză numerică şi optimizare, Chişinău, 2:1(3) (2000) | MR

[6] Soltan P., Prisacaru C., “Zadacha Shteynera na grafakh”, DAN SSSR, 198:1 (1971) (in Russian) | MR | Zbl