$n$-Homogeneous dynamical systems and $n$-ary algebras
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 139-152
Cet article a éte moissonné depuis la source Math-Net.Ru
A bijective correspondence between the classes of center-affinely equivalent $n$-homogeneous equations ($n\ge 2$) and the classes of isomorphic commutative $n$-ary algebras is established. It generates a correspondence between the properties of these equations and the structural properties of the associated $n$-ary algebras.
@article{BASM_2008_1_a8,
author = {Ilie Burdujan},
title = {$n${-Homogeneous} dynamical systems and $n$-ary algebras},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {139--152},
year = {2008},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2008_1_a8/}
}
Ilie Burdujan. $n$-Homogeneous dynamical systems and $n$-ary algebras. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 139-152. http://geodesic.mathdoc.fr/item/BASM_2008_1_a8/
[1] Kaplan J. L., Yorke J. A., “Nonassociative real algebras and quadratic differential equations”, Nonlinear Analysis, Theory, Methods and Applications, 3:1 (1979), 49–51 | DOI | MR | Zbl
[2] Kinyon K. M., Sagle A. A., “Quadratic Dynamical Systems and Algebras”, J. of Diff. Eqs., 117 (1995), 67–126 | DOI | MR | Zbl
[3] Chilov G. E., Analysis. Finite dimensional spaces, Ed. St. Encicl., Bucharest, 1983, Romanien translation
[4] Walker S., Algebras and differential equations, Hadronic Press, Palm Harbor, 1991 | MR