Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2008_1_a6, author = {Ovidiu C\^arj\u{a} and Mihai Necula and Ioan I. Vrabie}, title = {Orthogonal {Solutions} for a {Hyperbolic} {System}}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {125--130}, publisher = {mathdoc}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2008_1_a6/} }
TY - JOUR AU - Ovidiu Cârjă AU - Mihai Necula AU - Ioan I. Vrabie TI - Orthogonal Solutions for a Hyperbolic System JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2008 SP - 125 EP - 130 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2008_1_a6/ LA - en ID - BASM_2008_1_a6 ER -
Ovidiu Cârjă; Mihai Necula; Ioan I. Vrabie. Orthogonal Solutions for a Hyperbolic System. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 125-130. http://geodesic.mathdoc.fr/item/BASM_2008_1_a6/
[1] Bouligand H., “Sur les surfaces dépourvues de points hyperlimités”, Ann. Soc. Polon. Math., 9 (1930), 32–41
[2] Burlică M., Roşu D., “A viability result for semilinear reaction-diffusion systems”, Proceedings of the International Conference of Applied Analysis and Differential Equations (4–9 September 2006, Iaşi, Romania), eds. O. Cârjă and I. I. Vrabie, World Scientific, 2007, 31–44 | MR
[3] Cârjă O., Motreanu D., “Flow-invariance and Lyapunov pairs”, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 13B, suppl. (2006), 185–198 | MR
[4] Nagumo M., “Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen”, Proc. Phys.-Math. Soc. Japan, 24 (1942), 551–559 | MR | Zbl
[5] Pavel N. H., “Invariant sets for a class of semi-linear equations of evolution”, Nonlinear Anal., 1:2 (1976/1977), 187–196 | DOI | MR
[6] Severi F., “Su alcune questioni di topologia infinitesimale”, Annales Soc. Polonaise, 9 (1931), 97–108 | Zbl
[7] Vrabie I. I., $C_0$-Semigroups and Applications, North-Holland Mathematics Studies, 191, Elsevier, 2003 | MR