Orthogonal Solutions for a Hyperbolic System
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 125-130
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the hyperbolic system
$$
\begin{cases}
u_t=a\nabla v+f_1(u,н)\\
v_t=a\nabla u+f_2(u,н)\\
u(0,x)=\xi(x)\\
v(0,x)=\eta(x),
\end{cases}
$$
and we are looking for necessary and sufficient conditions on the forcing terms $f_i$, $i=1,2$, in order that the semigroup solutions, $u$ and $н$, starting from orthogonal data $\xi,\eta\in L^2(\mathbb R^n)$, remain orthogonal on $\mathbb R_+$.
@article{BASM_2008_1_a6,
author = {Ovidiu C\^arj\u{a} and Mihai Necula and Ioan I. Vrabie},
title = {Orthogonal {Solutions} for a {Hyperbolic} {System}},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {125--130},
publisher = {mathdoc},
number = {1},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2008_1_a6/}
}
TY - JOUR AU - Ovidiu Cârjă AU - Mihai Necula AU - Ioan I. Vrabie TI - Orthogonal Solutions for a Hyperbolic System JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2008 SP - 125 EP - 130 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2008_1_a6/ LA - en ID - BASM_2008_1_a6 ER -
Ovidiu Cârjă; Mihai Necula; Ioan I. Vrabie. Orthogonal Solutions for a Hyperbolic System. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 125-130. http://geodesic.mathdoc.fr/item/BASM_2008_1_a6/