Global Attractors of Quasi-Linear Non-Autonomous Difference Equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 84-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the study of global attractors of quasi-linear non-autonomous difference equations. We obtain the conditions for the existence of a compact global attractor. The obtained results are applied to the study of a special triangular map $T\colon R_+^2\to R_+^2$ describing a growth model with logistic population growth rate.
@article{BASM_2008_1_a4,
     author = {D. Cheban and C. Mammana and E. Michetti},
     title = {Global {Attractors} of {Quasi-Linear} {Non-Autonomous} {Difference} {Equations}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {84--104},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2008_1_a4/}
}
TY  - JOUR
AU  - D. Cheban
AU  - C. Mammana
AU  - E. Michetti
TI  - Global Attractors of Quasi-Linear Non-Autonomous Difference Equations
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 84
EP  - 104
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2008_1_a4/
LA  - en
ID  - BASM_2008_1_a4
ER  - 
%0 Journal Article
%A D. Cheban
%A C. Mammana
%A E. Michetti
%T Global Attractors of Quasi-Linear Non-Autonomous Difference Equations
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 84-104
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2008_1_a4/
%G en
%F BASM_2008_1_a4
D. Cheban; C. Mammana; E. Michetti. Global Attractors of Quasi-Linear Non-Autonomous Difference Equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 84-104. http://geodesic.mathdoc.fr/item/BASM_2008_1_a4/

[1] Brianzoni S., Mammana C., Michetti E., “Complex dynamics in the neoclassical growth model with differential savings and non-constant labor force growth”, Studies in Nonlinear Dynamics and Econometrics, 11:3 (2007), Article 3 | Zbl

[2] Brianzoni S., Mammana C., Michetti E., Global attractor in Solow growth model with differential savings and endogenic labor force growth, submitted

[3] Brianzoni S., Mammana C., Michetti E., Triangular Growth Model with Logistic Population Growth: Routes to Complexity, submitted

[4] Bohm V., Kaas L., “Differential savings, factor shares, and endogenous growth cycles”, Journal of Economic Dynamics and Control, 24:5-7 (2000), 965–980 | DOI | MR

[5] Cheban D. N., Global Attractors of Nonautonomous Dissipative Dynamical Systems, Interdisciplinary Mathematical Sciences, 1, World Scientific, River Edge, NJ, 2004, 528 pp. | MR | Zbl

[6] Cheban D. N., Mammana C., “Invariant Manifolds, Global Attractors and Almost Periodic Solutions of Non-autonomous Difference equations”, Nonlinear Analysis, Serie A, 56:4 (2004), 465–484 | DOI | MR | Zbl

[7] Cheban D. N., Mammana C., “Global Compact Attractors of Discrete Inclusions”, Nonlinear Analysis, Serie A, 65:8 (2006), 1669–1687 | DOI | MR | Zbl

[8] Cheban D. N., Mammana C., Michetti E., Global Attractors of Non-Autonomous Difference Equations, submitted

[9] Cheban D. N., Mammana C., “Compact Global Chaotic Attractors of Discrete Control Systems”, Fundamental and Applied Mathematics (to appear)

[10] Chicone C., Latushkin Yu., Evolution Semigroups in Dynamicals Systems and Differential Equations, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[11] Chueshov I. D., Introduction into the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkiv, 2002 | Zbl

[12] Cushing J. M., Henson S. M., “Global dynamics of some periodically forced, monotone difference equations”, Journal of Difference Equations and Applications, 7 (2001), 859–872 | DOI | MR | Zbl

[13] Cushing J. M., Henson S. M., “A periodically forced Beverton-Holt equation”, Journal of Difference Equations and Applications, 8:12 (2002), 1119–1120 | DOI | MR | Zbl

[14] Halanay A., Wexler D., Teoria Calitativă a Sistemelor cu Impulsuri, Bucureşti, 1968 | MR

[15] Henry D., Geometric Theory of Semi-linear Parabolic Equations, Lect. Notes in Math., 840, Springer, Berlin, 1981 | MR | Zbl

[16] Kloeden P. E., “On Sharkovsky's Cycle Coexistence Ordering”, Bull. Austr. Math. Soc., 20:2 (1979), 171–177 | DOI | MR

[17] Kolyada S., “On Dynamics of Triangular Maps of Square”, Ergodic Theory and Dynamical Systems, 12 (1992), 749–768 | DOI | MR | Zbl

[18] Sharkovsky A. N., Maistrenko Yu. L., Romanenko E. Yu., Difference Equations and Their Applications, Kluwer Academic Publishers, Dordrecht–Boston–London, 1993 | MR

[19] Sell G. R., Topological Dynamics and Ordinary Differential Equations, Van Nostrand-Reinhold, London, 1971 | MR | Zbl

[20] Sharkovsky A. N., Kolyada S. F., Sivak A. G., Fedorenko V. V., Dynamics of One-Dimensional Maps, Mathematics and its Applications, 407, Kluwer Academic Publishers Group, 1997 | MR | Zbl

[21] Solow R. M., “A contribution to the theory of economic growth”, Quarterly Journal of Economics, 70 (1956), 65–94 | DOI