Singularly perturbed Cauchy problem for abstract linear differential equations of second order in Hilbert spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 195-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behavior of solutions to the problem $$ \begin{cases} \varepsilon\bigl(u_\varepsilon''(t)+A_1u_\varepsilon(t)\bigr)+u_\varepsilon'(t)+A_0u_\varepsilon(t)=f(t), \quad t>0,\\ u_\varepsilon(0)=u_0, \quad u_\varepsilon'=u_1, \end{cases} $$ in the Hilbert space $H$ as $\varepsilon\mapsto 0$ where $A_1$ and $A_0$ are two linear selfadjoint operators.
@article{BASM_2008_1_a12,
     author = {A. Perjan and Galina Rusu},
     title = {Singularly perturbed {Cauchy} problem for abstract linear differential equations of second order in {Hilbert} spaces},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {195--204},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2008_1_a12/}
}
TY  - JOUR
AU  - A. Perjan
AU  - Galina Rusu
TI  - Singularly perturbed Cauchy problem for abstract linear differential equations of second order in Hilbert spaces
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2008
SP  - 195
EP  - 204
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2008_1_a12/
LA  - en
ID  - BASM_2008_1_a12
ER  - 
%0 Journal Article
%A A. Perjan
%A Galina Rusu
%T Singularly perturbed Cauchy problem for abstract linear differential equations of second order in Hilbert spaces
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2008
%P 195-204
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2008_1_a12/
%G en
%F BASM_2008_1_a12
A. Perjan; Galina Rusu. Singularly perturbed Cauchy problem for abstract linear differential equations of second order in Hilbert spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 195-204. http://geodesic.mathdoc.fr/item/BASM_2008_1_a12/

[1] Barbu V., Nonlinear semigroups of contractions in Banach spaces, Ed. Academiei Române, Bucureşti, 1974 (in Romanian) | MR | Zbl

[2] Perjan A., “Linear singular perturbations of hyperbolic-parabolic type”, Buletunul A.Ş. R.M., Matematica, 2003, no. 2(42), 95–112 | MR | Zbl

[3] Lavrentiev M. M., Reznitskaia K. G., Yahno B. G., The inverse one-dimensional problems from mathematical physics, Nauka, Novosibirsk, 1982 (in Russian)

[4] Morosanu Gh., Nonlinear Evolution Equations and Applications, Ed. Academiei Române, Bucharest, 1988 | MR | Zbl