Singularly perturbed Cauchy problem for abstract linear differential equations of second order in Hilbert spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 195-204
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the behavior of solutions to the problem
$$
\begin{cases}
\varepsilon\bigl(u_\varepsilon''(t)+A_1u_\varepsilon(t)\bigr)+u_\varepsilon'(t)+A_0u_\varepsilon(t)=f(t), \quad t>0,\\
u_\varepsilon(0)=u_0, \quad u_\varepsilon'=u_1,
\end{cases}
$$
in the Hilbert space $H$ as $\varepsilon\mapsto 0$ where $A_1$ and $A_0$ are two linear selfadjoint operators.
@article{BASM_2008_1_a12,
author = {A. Perjan and Galina Rusu},
title = {Singularly perturbed {Cauchy} problem for abstract linear differential equations of second order in {Hilbert} spaces},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {195--204},
publisher = {mathdoc},
number = {1},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2008_1_a12/}
}
TY - JOUR AU - A. Perjan AU - Galina Rusu TI - Singularly perturbed Cauchy problem for abstract linear differential equations of second order in Hilbert spaces JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2008 SP - 195 EP - 204 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2008_1_a12/ LA - en ID - BASM_2008_1_a12 ER -
%0 Journal Article %A A. Perjan %A Galina Rusu %T Singularly perturbed Cauchy problem for abstract linear differential equations of second order in Hilbert spaces %J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica %D 2008 %P 195-204 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/BASM_2008_1_a12/ %G en %F BASM_2008_1_a12
A. Perjan; Galina Rusu. Singularly perturbed Cauchy problem for abstract linear differential equations of second order in Hilbert spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 195-204. http://geodesic.mathdoc.fr/item/BASM_2008_1_a12/