On theory of surfaces defined by the first order systems of equations
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 161-175
Voir la notice de l'article provenant de la source Math-Net.Ru
The properties of surfaces defined by spatial systems of differential equations are studied. The Monge equations connected with the first order nonlinear p.d.e. are investigated. The properties of Riemannian metrics defined by the systems of differential equations having applications in theory of nonlinear dynamical systems with regular and chaotic behaviour are considered.
@article{BASM_2008_1_a10,
author = {Valery Dryuma},
title = {On theory of surfaces defined by the first order systems of equations},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {161--175},
publisher = {mathdoc},
number = {1},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2008_1_a10/}
}
TY - JOUR AU - Valery Dryuma TI - On theory of surfaces defined by the first order systems of equations JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2008 SP - 161 EP - 175 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2008_1_a10/ LA - en ID - BASM_2008_1_a10 ER -
Valery Dryuma. On theory of surfaces defined by the first order systems of equations. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2008), pp. 161-175. http://geodesic.mathdoc.fr/item/BASM_2008_1_a10/