On mixed~LCA groups with commutative rings of continuous endomorphisms
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 73-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal L$ be the class of locally compact abelian (LCA) groups. For $X\in\mathcal L$, let $E(X)$ denote the ring of continuous endomorphisms of $X$. In this paper, we determine for certain subclasses$\mathcal S$ of $\mathcal L$ the groups $X\in\mathcal S$ such that $E(X)$ is commutative. The main results concern the case of mixed LCA groups.
@article{BASM_2007_3_a6,
     author = {Valeriu Popa},
     title = {On {mixed~LCA} groups with commutative rings of continuous endomorphisms},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {73--90},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2007_3_a6/}
}
TY  - JOUR
AU  - Valeriu Popa
TI  - On mixed~LCA groups with commutative rings of continuous endomorphisms
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 73
EP  - 90
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2007_3_a6/
LA  - en
ID  - BASM_2007_3_a6
ER  - 
%0 Journal Article
%A Valeriu Popa
%T On mixed~LCA groups with commutative rings of continuous endomorphisms
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 73-90
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2007_3_a6/
%G en
%F BASM_2007_3_a6
Valeriu Popa. On mixed~LCA groups with commutative rings of continuous endomorphisms. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 73-90. http://geodesic.mathdoc.fr/item/BASM_2007_3_a6/

[1] Armacost D. L., The structure of locally compact abelian groups, Pure and Applied Mathematics Series, 68, Marcel Dekker, New York, 1981 | MR | Zbl

[2] Bourbaki N., Topologie generale. Éléments de mathematique, Chapter 1–2, Nauka, Moscow, 1968 | Zbl

[3] Bourbaki N., Topologie generale.Éléments de mathematique, Chapter 3–8, Nauka, Moscow, 1969 | Zbl

[4] Dikranjan D., Prodanov I., Stoyanov L., Topological groups, Pure and Applied Mathematics Series, 130, Marcel Dekker, New York–Basel, 1990 | MR | Zbl

[5] Fuchs L., Infinite abelian groups, Vol. 1, Academic Press, New York–London, 1970 | MR | Zbl

[6] Fuchs L., Infinite abelian groups, Vol. 2, Academic Press, New York–London, 1973 | MR | Zbl

[7] Griffith Ph., Infinite abelian group theory, The University of Chicago Press, Chicago–London, 1970 | MR

[8] Hewitt E., Ross K., Abstract Harmonic Analysis, Vol. 1, Nauka, Moscow, 1975 | MR

[9] Hungerford T., Algebra, Springer-Verlag, New York, 1974 | MR

[10] Van Leeuwen L. C. A., “On the endomorphism rings of direct sums of groups”, Acta Scient. Math., 28:1–2 (1967), 21–29 | MR | Zbl

[11] Morris S., Pontryagin duality and the structure of locally compact abelian groups, Cambridge University Press, Cambridge, 1977 | MR | Zbl

[12] Moskowitz M., “Homological algebra in locally compact abelian groups”, Trans. Amer. Math. Soc., 127 (1967), 361–404 | DOI | MR | Zbl

[13] Popa V., “Units, idempotents and nilpotents of an endomorphism ring, II”, Bul. Acad. Şt. R. Moldova, Matematica, 1997, no. 1(23), 93–105 | MR

[14] Popa V., “On topological torsion LCA groups with commutative ring of continuous endomorphisms”, Bul. Acad. Şt. R. Moldova, Matematica, 2006, no. 3(52), 87–100 | MR | Zbl

[15] Popa V., “On LCA groups in which some closed subgroups have commutative rings of continuous endomorphisms”, Bul. Acad. Şt. R. Moldova, Matematica, 2007, no. 1(53), 83–94 | MR | Zbl

[16] Popa V., “On torsionfree LCA groups with commutative rings of continuous endomorphisms”, Bul. Acad. Şt. R. Moldova, Matematica, 2007, no. 2(54), 81–100 | MR | Zbl

[17] Szele T., Szendrei J., “On abelian groups with commutative endomorphism ring”, Acta Math. Acad. Sci. Hung., 2 (1951), 309–324 | DOI | MR | Zbl