About Quasiconformal Maps in Finsler Spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 64-72
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a constant $C$ which measures the deviation of the Finsler metric from a Riemannian metric and we prove that the problem of the existence of quasiconformal mappings between Finsler spaces can be reduced to the same problem between Riemann spaces.
@article{BASM_2007_3_a5,
author = {Veronica{\textendash}Teodora Borcea},
title = {About {Quasiconformal} {Maps} in {Finsler} {Spaces}},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {64--72},
publisher = {mathdoc},
number = {3},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2007_3_a5/}
}
Veronica–Teodora Borcea. About Quasiconformal Maps in Finsler Spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 64-72. http://geodesic.mathdoc.fr/item/BASM_2007_3_a5/