About Quasiconformal Maps in Finsler Spaces
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 64-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a constant $C$ which measures the deviation of the Finsler metric from a Riemannian metric and we prove that the problem of the existence of quasiconformal mappings between Finsler spaces can be reduced to the same problem between Riemann spaces.
@article{BASM_2007_3_a5,
     author = {Veronica{\textendash}Teodora Borcea},
     title = {About {Quasiconformal} {Maps} in {Finsler} {Spaces}},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {64--72},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2007_3_a5/}
}
TY  - JOUR
AU  - Veronica–Teodora Borcea
TI  - About Quasiconformal Maps in Finsler Spaces
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 64
EP  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2007_3_a5/
LA  - en
ID  - BASM_2007_3_a5
ER  - 
%0 Journal Article
%A Veronica–Teodora Borcea
%T About Quasiconformal Maps in Finsler Spaces
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 64-72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2007_3_a5/
%G en
%F BASM_2007_3_a5
Veronica–Teodora Borcea. About Quasiconformal Maps in Finsler Spaces. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 64-72. http://geodesic.mathdoc.fr/item/BASM_2007_3_a5/

[1] Suominen K., “Quasiconformal Mappings in Manifolds”, Ann. Acad. Sci. Fenn., 393 (1966), 5–39 | MR

[2] Caraman P., “Module and $p$-module in an abstract Wiener space”, Rev. Roum. Math. Pures Appl., 27 (1982), 551–599 | MR | Zbl

[3] Borcea V. T., Neagu A., “$p$-modulus and $p$-capacity in a Finsler space”, Math. Report, 52 (2000), 431–439 | MR | Zbl

[4] Borcea V. T., Neagu A., “A class of homeomorphisms between the riemannian manifolds”, Rev. Roum. Math. Pures Appl., 36 (1991), 323–332 | MR | Zbl

[5] Nakai M., Tanaka N., “Existence of quasiconformal mappings between riemannian manifolds”, Kodai Math. J., 5 (1982), 122–131 | DOI | MR | Zbl

[6] Caraman P., $n$-dimensional quasiconformal mappings, Ed. Acad. Române, Bucureşti; Abacus Press, Tunbridge Wells (Kent) England, 1974 | Zbl