A~characterization of the solutions of the darboux problem for third order hyperbolic inclusions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 35-48

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the Darboux Problem for a third order hyperbolic inclusion of the form $u_{xyz}\in F (x,y,z,u)$ and we prove a characterization of the solutions of the considered problem using the Aumann integral defined for multifunctions.
@article{BASM_2007_3_a2,
     author = {Georgeta Teodoru},
     title = {A~characterization of the solutions of the darboux problem for third order hyperbolic inclusions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {35--48},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2007_3_a2/}
}
TY  - JOUR
AU  - Georgeta Teodoru
TI  - A~characterization of the solutions of the darboux problem for third order hyperbolic inclusions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 35
EP  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2007_3_a2/
LA  - en
ID  - BASM_2007_3_a2
ER  - 
%0 Journal Article
%A Georgeta Teodoru
%T A~characterization of the solutions of the darboux problem for third order hyperbolic inclusions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 35-48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2007_3_a2/
%G en
%F BASM_2007_3_a2
Georgeta Teodoru. A~characterization of the solutions of the darboux problem for third order hyperbolic inclusions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 35-48. http://geodesic.mathdoc.fr/item/BASM_2007_3_a2/