A~characterization of the solutions of the darboux problem for third order hyperbolic inclusions
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 35-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the Darboux Problem for a third order hyperbolic inclusion of the form $u_{xyz}\in F (x,y,z,u)$ and we prove a characterization of the solutions of the considered problem using the Aumann integral defined for multifunctions.
@article{BASM_2007_3_a2,
     author = {Georgeta Teodoru},
     title = {A~characterization of the solutions of the darboux problem for third order hyperbolic inclusions},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {35--48},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2007_3_a2/}
}
TY  - JOUR
AU  - Georgeta Teodoru
TI  - A~characterization of the solutions of the darboux problem for third order hyperbolic inclusions
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 35
EP  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2007_3_a2/
LA  - en
ID  - BASM_2007_3_a2
ER  - 
%0 Journal Article
%A Georgeta Teodoru
%T A~characterization of the solutions of the darboux problem for third order hyperbolic inclusions
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 35-48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2007_3_a2/
%G en
%F BASM_2007_3_a2
Georgeta Teodoru. A~characterization of the solutions of the darboux problem for third order hyperbolic inclusions. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2007), pp. 35-48. http://geodesic.mathdoc.fr/item/BASM_2007_3_a2/

[1] Aumann R. J., “Integrals of Set - Valued Functions”, Journal of Mathematical Analysis and Applications, 12 (1956), 1–12 | DOI | MR

[2] Carathéodory C., Vorlesungen über Reelle Funktionen, 3 Ed., Chelsea Publishing Company, New York, 1968 | MR

[3] Castaing Gh., “Sur les équations differentielles multivoques”, Comptes Rendus Acad. Sci. Paris, Série A, 263:2 (1966), 63–66 | MR | Zbl

[4] Castaing Ch., “Quelques problèmes de mésurabilité liés à la théorie de la commande”, Comptes Rendus Acad. Sci. Paris, Série A, 262:7 (1966), 409–411 | MR | Zbl

[5] Cellina A., “Multivalued differential equations and ordinary differential equations”, SIAM J. Appl. Math., 18:2 (1970), 533–538 | DOI | MR | Zbl

[6] Cernea A., Incluziuni diferenţiale hiperbolice şi control optimal, Editura Academiei Române, Bucureşti, 2001

[7] Deimling K., “A Carathéodory theory for systems of integral equations”, Ann. Mat. Pura Appl., 4:86 (1970), 217–260 | MR | Zbl

[8] Deimling K., “Das Picard-Problem für $u_{xy}=f\left(x,y,u,u_{x},u_{y}\right)$ unter Carathéodory-Voraussetzungen”, Math. Z., 114 (1970), 303–312 | DOI | MR | Zbl

[9] Deimling K., “Das charakteristiche Anfangswertproblem für $u_{x_{1}x_{2}x_{3}}=f$ unter Carathéodory-Voraussetzungen”, Arch. Math. (Basel), 22 (1971), 514–522 | MR | Zbl

[10] Marano S., “Generalized Solutions of Partial Differential Inclusions Depending on a Parameter”, Rend. Acad. Naz. Sc. XL., Mem. Mat., 13 (1989), 281–295 | MR | Zbl

[11] Marano S., “Classical Solutions of Partial Differential Inclusions in Banach space”, Appl. Anal., 42 (1991), 127–143 | DOI | MR | Zbl

[12] Marano S., “Controllability of Partial Differential Inclusions Depending on a Parameter and Distributed Parameter Control Process”, Le Matematiche, XLV (1990), 283–300 | MR

[13] Rus I. A., Principii şi aplicaţii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979

[14] Sosulski W., “On neutral partial functional-differential inclusions of hyperbolic type”, Demonstratio Mathematica, 23 (1990), 893–909 | MR | Zbl

[15] Teodoru G., “A characterization of the solutions of the Darboux Problem for the equation $\dfrac{\partial^{2}z}{\partial x\partial y}\in F\left(x,y,z\right)$”, Analele Ştiinţifice ale Universităţii “Al. I. Cuza” Iaşi, s. I a, Matematică, 33:1 (1987), 33–38 | MR | Zbl

[16] Teodoru G., “The Darboux Problem for third order hyperbolic inclusions”, Libertas Matematica, 23 (2003), 119–127 | MR | Zbl

[17] Teodoru G., “Prolongation of solutions of the Darboux Problem for third order hyperbolic inclusions”, Libertas Matematica, 26 (2006), 83–96 | MR