An abstract approach to the study of derivation mappings on non-commutative rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 107-117
Cet article a éte moissonné depuis la source Math-Net.Ru
An abstract approach to the study of derivation mappings on non-commutative rings is undertaken. These mappings are indexed by elements of multiplicative monoid. We describe completely the derivation mappings in the case of a monoid generated by two elements.
@article{BASM_2007_2_a9,
author = {Elena P. Cojuhari},
title = {An abstract approach to the study of derivation mappings on non-commutative rings},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {107--117},
year = {2007},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2007_2_a9/}
}
TY - JOUR AU - Elena P. Cojuhari TI - An abstract approach to the study of derivation mappings on non-commutative rings JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2007 SP - 107 EP - 117 IS - 2 UR - http://geodesic.mathdoc.fr/item/BASM_2007_2_a9/ LA - en ID - BASM_2007_2_a9 ER -
Elena P. Cojuhari. An abstract approach to the study of derivation mappings on non-commutative rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 107-117. http://geodesic.mathdoc.fr/item/BASM_2007_2_a9/
[1] Cojuhari E., “The property of universality for some monoid algebras over non-commutative rings”, Buletinul A.Ş.R.M., Matematica, 2006, no. 2(51), 102–105 | MR | Zbl
[2] Lang S., Algebra, Addison Wesley, Reading, Massachusetts, 1970 | MR
[3] Cohn P. M., Free rings and their relations, Academic Press, London–New-York, 1971 | MR
[4] Smits T. H. M., “Nilpotent $S$-derivations”, Indag. Math., 30 (1968), 72–86 | MR
[5] Smits T. H. M., “Skew polynomial rings”, Indag. Math., 30 (1968), 209–224 | MR