On definitions of groupoids closely connected with quasigroups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 43-54

Voir la notice de l'article provenant de la source Math-Net.Ru

Both “existential” and “equational” definitions of binary quasigroups and groupoids closely connected with quasigroups are given. It is proved that a groupoid $(Q,\cdot)$ is a quasigroup if and only if all middle translations of $(Q,\cdot)$ are bijective maps of the set $Q$.
@article{BASM_2007_2_a4,
     author = {V. A. Shcherbacov},
     title = {On definitions of groupoids closely connected with quasigroups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {43--54},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2007_2_a4/}
}
TY  - JOUR
AU  - V. A. Shcherbacov
TI  - On definitions of groupoids closely connected with quasigroups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 43
EP  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2007_2_a4/
LA  - en
ID  - BASM_2007_2_a4
ER  - 
%0 Journal Article
%A V. A. Shcherbacov
%T On definitions of groupoids closely connected with quasigroups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 43-54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2007_2_a4/
%G en
%F BASM_2007_2_a4
V. A. Shcherbacov. On definitions of groupoids closely connected with quasigroups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 43-54. http://geodesic.mathdoc.fr/item/BASM_2007_2_a4/