Locicaly separable algebras in varieties of algebras
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 33-42
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Theta$ be an arbitrary variety of algebras and $H$ be an algebra in $\Theta$. Along with algebraic geometry in $\Theta$ over the distinguished algebra $H$ we consider logical geometry in $\Theta$ over $H$. This insight leads to a system of notions and stimulates a number of new problems. We introduce a notion of logically separable in $\Theta$ algebras and consider it in the frames of logically-geometrical relations between different $H_1$ and $H_2$ in $\Theta$. The paper is aimed to give a flavor of a rather new subject in a short and concentrated manner.
@article{BASM_2007_2_a3,
author = {B. Plotkin},
title = {Locicaly separable algebras in varieties of algebras},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {33--42},
publisher = {mathdoc},
number = {2},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2007_2_a3/}
}
B. Plotkin. Locicaly separable algebras in varieties of algebras. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 33-42. http://geodesic.mathdoc.fr/item/BASM_2007_2_a3/