Locicaly separable algebras in varieties of algebras
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 33-42

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Theta$ be an arbitrary variety of algebras and $H$ be an algebra in $\Theta$. Along with algebraic geometry in $\Theta$ over the distinguished algebra $H$ we consider logical geometry in $\Theta$ over $H$. This insight leads to a system of notions and stimulates a number of new problems. We introduce a notion of logically separable in $\Theta$ algebras and consider it in the frames of logically-geometrical relations between different $H_1$ and $H_2$ in $\Theta$. The paper is aimed to give a flavor of a rather new subject in a short and concentrated manner.
@article{BASM_2007_2_a3,
     author = {B. Plotkin},
     title = {Locicaly separable algebras in varieties of algebras},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {33--42},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2007_2_a3/}
}
TY  - JOUR
AU  - B. Plotkin
TI  - Locicaly separable algebras in varieties of algebras
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 33
EP  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2007_2_a3/
LA  - en
ID  - BASM_2007_2_a3
ER  - 
%0 Journal Article
%A B. Plotkin
%T Locicaly separable algebras in varieties of algebras
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 33-42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2007_2_a3/
%G en
%F BASM_2007_2_a3
B. Plotkin. Locicaly separable algebras in varieties of algebras. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 33-42. http://geodesic.mathdoc.fr/item/BASM_2007_2_a3/