Identities with permutations associated with quasigroups isotopic to groups
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 19-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we select a class of identities with permutations including three variables in a quasigroup $(Q,\cdot)$ each of which provides isotopy of this quasigroup to a group and describe a class of identities in a primitive quasigroup $(Q,\cdot,\backslash,/)$ each of which is sufficient for the quasigroup $(Q,\cdot)$ to be isotopic to a group. From these results it follows that in the identity of $V$. Belousov [6] characterizing a quasigroup isotopic to a group (to an abelian group) two from five (one of four) variables can be fixed.
@article{BASM_2007_2_a1,
     author = {G. Belyavskaya},
     title = {Identities with permutations associated with quasigroups isotopic to groups},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {19--24},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2007_2_a1/}
}
TY  - JOUR
AU  - G. Belyavskaya
TI  - Identities with permutations associated with quasigroups isotopic to groups
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 19
EP  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2007_2_a1/
LA  - en
ID  - BASM_2007_2_a1
ER  - 
%0 Journal Article
%A G. Belyavskaya
%T Identities with permutations associated with quasigroups isotopic to groups
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 19-24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2007_2_a1/
%G en
%F BASM_2007_2_a1
G. Belyavskaya. Identities with permutations associated with quasigroups isotopic to groups. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 19-24. http://geodesic.mathdoc.fr/item/BASM_2007_2_a1/

[1] Belyavskaya G. B., Tabarov A. H., “Nuclei and the centre of linear quasigroups”, Izvestiya AN Moldovy, Matematika, 1991, no. 3(6), 37–42 | MR

[2] Belyavskaya G. B., “$T$-quasigroups and the centre of a quasigroup”, Mat. issled., no. 11, Stiintsa, Kishinev, 1989, 24–43 | MR

[3] Farago T., “Contribution to the definition of a group”, Publ. Math. Debrecen, 3 (1953), 133–137 | MR

[4] Sade A., “Entropie demosienne de multigroupoides et de quasigroups”, Ann. Soc. Scient. Bruxelles, 73:3 (1959), 302–309 | MR | Zbl

[5] Sade A., “Demosian systems of quasigroups”, Amer. Math. Monthly, 68:4 (1961), 329–337 | DOI | MR | Zbl

[6] Belousov V. D., “Balanced identities in quasigroups”, Mat. sbornik, 70(112):1 (1966), 55–97 (in Russian) | MR | Zbl

[7] Belousov V. D., “Globally associative systems of quasigroups”, Mat. sbornik, 55(97) (1961), 221–236 (in Russian) | MR | Zbl

[8] Aczel J., Belousov V. D., Hosszu M., “Generalized associativity and bisymmetry on quasi-groups”, Acta math., Acad. scient. Hung., XI:1–2 (1960), 127–136 | DOI | MR

[9] Shcherbakov V. A., “On linear quasigroups and their automorphism groups”, Mat. issled., no. 120, Stiintsa, Kishinev, 1991, 104–113 (in Russian) | MR

[10] Izbash V. I., “Isomorphisms of quasigroups isotopic to groups”, Quasigroups and Related Systems, 2:1 (1995), 34–50 | MR | Zbl

[11] Sokhatsky F. N., “On isotopies of groups, I”, Ukraine Mat. jurnal, 47:10 (1995), 1387–1398 (in Ukrainian) | MR

[12] Sokhatsky F. N., “On isotopies of groups, II”, Ukraine Mat. jurnal, 47:12 (1995), 1692–1703 (in Ukrainian) | MR

[13] Sokhatsky F. N., “On isotopies of groups, III”, Ukraine Mat. jurnal, 48:2 (1996), 251–259 (in Ukrainian) | MR

[14] Belousov V. D., Foundations of the quasigroup and loop theory, Nauka, Moscow, 1967 | MR | Zbl