Properties of accessible subrings of topological rings when taking quotient rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 4-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

A continuous isomorphism of topological rings is a superposition of a finite number of semi-topological isomorphisms if and only if it is a narrowing on an accessible subring of some topological homomorphism.
@article{BASM_2007_2_a0,
     author = {V. I. Arnautov},
     title = {Properties of accessible subrings of topological rings when taking quotient rings},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {4--18},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2007_2_a0/}
}
TY  - JOUR
AU  - V. I. Arnautov
TI  - Properties of accessible subrings of topological rings when taking quotient rings
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 4
EP  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2007_2_a0/
LA  - en
ID  - BASM_2007_2_a0
ER  - 
%0 Journal Article
%A V. I. Arnautov
%T Properties of accessible subrings of topological rings when taking quotient rings
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 4-18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2007_2_a0/
%G en
%F BASM_2007_2_a0
V. I. Arnautov. Properties of accessible subrings of topological rings when taking quotient rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 4-18. http://geodesic.mathdoc.fr/item/BASM_2007_2_a0/

[1] Arnautov V. I., “Semitopological isomorphism of topological rings”, Mat. issled., 4:2(12) (1969), 3–16 (in Russian) | MR | Zbl

[2] Arnautov V. I., “Semitopological isomorphism of topological groups”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2004, no. 1(44), 15–25 | MR | Zbl

[3] Arnautov V. I., “Properties of one-sided ideals of topological rings”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2006, no. 1(50), 3–14 | MR | Zbl

[4] Arnautov V. I., Glavatsky S. T., Mikhalev A. V., Introduction to the theory of topological rings and modules, Marcel Dekker, Inc., New York–Basel–Hong Kong, 1996 | MR | Zbl