Properties of accessible subrings of topological rings when taking quotient rings
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 4-18
Cet article a éte moissonné depuis la source Math-Net.Ru
A continuous isomorphism of topological rings is a superposition of a finite number of semi-topological isomorphisms if and only if it is a narrowing on an accessible subring of some topological homomorphism.
@article{BASM_2007_2_a0,
author = {V. I. Arnautov},
title = {Properties of accessible subrings of topological rings when taking quotient rings},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {4--18},
year = {2007},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2007_2_a0/}
}
TY - JOUR AU - V. I. Arnautov TI - Properties of accessible subrings of topological rings when taking quotient rings JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2007 SP - 4 EP - 18 IS - 2 UR - http://geodesic.mathdoc.fr/item/BASM_2007_2_a0/ LA - en ID - BASM_2007_2_a0 ER -
V. I. Arnautov. Properties of accessible subrings of topological rings when taking quotient rings. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 2 (2007), pp. 4-18. http://geodesic.mathdoc.fr/item/BASM_2007_2_a0/
[1] Arnautov V. I., “Semitopological isomorphism of topological rings”, Mat. issled., 4:2(12) (1969), 3–16 (in Russian) | MR | Zbl
[2] Arnautov V. I., “Semitopological isomorphism of topological groups”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2004, no. 1(44), 15–25 | MR | Zbl
[3] Arnautov V. I., “Properties of one-sided ideals of topological rings”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2006, no. 1(50), 3–14 | MR | Zbl
[4] Arnautov V. I., Glavatsky S. T., Mikhalev A. V., Introduction to the theory of topological rings and modules, Marcel Dekker, Inc., New York–Basel–Hong Kong, 1996 | MR | Zbl