@article{BASM_2007_1_a9,
author = {Raluca Mihaela Georgescu and Elena Naidenova},
title = {$GL(2,\mathbb R)$-orbits in a~competing species model},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {101--106},
year = {2007},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2007_1_a9/}
}
TY - JOUR AU - Raluca Mihaela Georgescu AU - Elena Naidenova TI - $GL(2,\mathbb R)$-orbits in a competing species model JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2007 SP - 101 EP - 106 IS - 1 UR - http://geodesic.mathdoc.fr/item/BASM_2007_1_a9/ LA - en ID - BASM_2007_1_a9 ER -
Raluca Mihaela Georgescu; Elena Naidenova. $GL(2,\mathbb R)$-orbits in a competing species model. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2007), pp. 101-106. http://geodesic.mathdoc.fr/item/BASM_2007_1_a9/
[1] Boularas D., Braicov A., Vulpe N., “The $GL(2,\mathbb{R})$-orbits of differential system with quadratic nonlinearities”, Proc. of the 2-nd Conference of the Mathematical Society of the Rep. of Moldova, Chisinau, 2004, 65–67
[2] Hirsch M. W., Smale S., Devaney R. L., Differential equations, dynamical systems, and an introduction to chaos, Academic Elsevier, New York–Amsderdam, 2004, 246–254 | MR
[3] Georgescu R.-M., “Bifurcation in a two competing species model”, Theodor Angheluta seminar, 2006 (to appear) | MR
[4] Academic New York, 1982 | MR | Zbl | Zbl
[5] Popa M. N., Application of algebraic methods to differental equations, Flower Power, Pitesti, 2004 (in Romanian) | MR | Zbl
[6] Sibirsky K., Introduction to algebraic theory of invariants of differential equations, Stiinta, Chisinau, 1982 (in Russian); 1988 (in English) | Zbl