Multi-dimensional Darboux type differential systems with quadratic nonlinearities
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2007), pp. 95-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article the $n$-dimensional autonomous Darboux type differential systems with nonlinearities of the $2^{nd}$ degree are considered. With the aid of theorem on integrating factor the particular invariant $GL(n, \mathbb R)$-integrals are constructed as well as the first integrals of Darboux type for considered systems. These integrals represent the algebraic curves of the $1^{st}$ degree. The recurrence formula of particular invariant $GL(n,\mathbb R)$-integrals of the Darboux type differential system is found.
@article{BASM_2007_1_a8,
     author = {O. V. Diaconescu},
     title = {Multi-dimensional {Darboux} type differential systems with quadratic nonlinearities},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {95--100},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2007_1_a8/}
}
TY  - JOUR
AU  - O. V. Diaconescu
TI  - Multi-dimensional Darboux type differential systems with quadratic nonlinearities
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 95
EP  - 100
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2007_1_a8/
LA  - en
ID  - BASM_2007_1_a8
ER  - 
%0 Journal Article
%A O. V. Diaconescu
%T Multi-dimensional Darboux type differential systems with quadratic nonlinearities
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 95-100
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2007_1_a8/
%G en
%F BASM_2007_1_a8
O. V. Diaconescu. Multi-dimensional Darboux type differential systems with quadratic nonlinearities. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2007), pp. 95-100. http://geodesic.mathdoc.fr/item/BASM_2007_1_a8/

[1] Manchester University Press, Manchester, 1988 | MR | Zbl

[2] Diaconescu O. V., Popa M. N., “Lie theorem and $GL(n,\mathbb{R})$-orbits of multi-dimensional polynomial differential systems”, Proceedings of the 5th Annual Symposium on Mathematics Applied in Biology and Biophysics, Iasi, 2006 | MR

[3] Gherstega N. N., Lie algebras for three-dimensional differential system and applications, Abstract for Ph. D. thesis, 2006

[4] Diaconescu O. V., Popa M. N., “Lie algebras of operators and invariant $GL(2,R)$-integrals for Darboux type differential systems”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2006, no. 3(52), 3–16 | MR | Zbl

[5] Noordhoff, 1964 | Zbl

[6] Darboux G., “Memoire sur les equations differentielles algebriques du premier order et du premier degree”, Bull. Sciences Math., Ser. 2, 1878, no. 2(1), 60–96 ; 123–144 ; 151–200 | Zbl