Voir la notice de l'article provenant de la source Math-Net.Ru
@article{BASM_2007_1_a8, author = {O. V. Diaconescu}, title = {Multi-dimensional {Darboux} type differential systems with quadratic nonlinearities}, journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica}, pages = {95--100}, publisher = {mathdoc}, number = {1}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/BASM_2007_1_a8/} }
TY - JOUR AU - O. V. Diaconescu TI - Multi-dimensional Darboux type differential systems with quadratic nonlinearities JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica PY - 2007 SP - 95 EP - 100 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/BASM_2007_1_a8/ LA - en ID - BASM_2007_1_a8 ER -
O. V. Diaconescu. Multi-dimensional Darboux type differential systems with quadratic nonlinearities. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2007), pp. 95-100. http://geodesic.mathdoc.fr/item/BASM_2007_1_a8/
[1] Manchester University Press, Manchester, 1988 | MR | Zbl
[2] Diaconescu O. V., Popa M. N., “Lie theorem and $GL(n,\mathbb{R})$-orbits of multi-dimensional polynomial differential systems”, Proceedings of the 5th Annual Symposium on Mathematics Applied in Biology and Biophysics, Iasi, 2006 | MR
[3] Gherstega N. N., Lie algebras for three-dimensional differential system and applications, Abstract for Ph. D. thesis, 2006
[4] Diaconescu O. V., Popa M. N., “Lie algebras of operators and invariant $GL(2,R)$-integrals for Darboux type differential systems”, Buletinul Academiei de Ştiinţe a Republicii Moldova, Matematica, 2006, no. 3(52), 3–16 | MR | Zbl
[5] Noordhoff, 1964 | Zbl
[6] Darboux G., “Memoire sur les equations differentielles algebriques du premier order et du premier degree”, Bull. Sciences Math., Ser. 2, 1878, no. 2(1), 60–96 ; 123–144 ; 151–200 | Zbl