Linear convolution of criteria in the vector $p$-center problem
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2007), pp. 73-82

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a linear convolution of criteria and possibility of its application for finding Pareto set in the vector variant of the well-known combinatorial $p$-center problem. The polynomial algorithm which transforms any vector $p$-center problem to a solvable problem with the same Pareto set is proposed. An example which illustrates the work of algorithm is performed.
@article{BASM_2007_1_a6,
     author = {Vladimir A. Emelichev and Evgeny E. Gurevsky},
     title = {Linear convolution of criteria in the vector $p$-center problem},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {73--82},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2007_1_a6/}
}
TY  - JOUR
AU  - Vladimir A. Emelichev
AU  - Evgeny E. Gurevsky
TI  - Linear convolution of criteria in the vector $p$-center problem
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2007
SP  - 73
EP  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2007_1_a6/
LA  - en
ID  - BASM_2007_1_a6
ER  - 
%0 Journal Article
%A Vladimir A. Emelichev
%A Evgeny E. Gurevsky
%T Linear convolution of criteria in the vector $p$-center problem
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2007
%P 73-82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2007_1_a6/
%G en
%F BASM_2007_1_a6
Vladimir A. Emelichev; Evgeny E. Gurevsky. Linear convolution of criteria in the vector $p$-center problem. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 1 (2007), pp. 73-82. http://geodesic.mathdoc.fr/item/BASM_2007_1_a6/