@article{BASM_2006_3_a6,
author = {Angela P\u{a}\c{s}canu},
title = {The $GL(2,{\mathbb R})$-orbits of polynomial differential systems of degree four},
journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
pages = {65--72},
year = {2006},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/BASM_2006_3_a6/}
}
TY - JOUR
AU - Angela Păşcanu
TI - The $GL(2,{\mathbb R})$-orbits of polynomial differential systems of degree four
JO - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY - 2006
SP - 65
EP - 72
IS - 3
UR - http://geodesic.mathdoc.fr/item/BASM_2006_3_a6/
LA - en
ID - BASM_2006_3_a6
ER -
Angela Păşcanu. The $GL(2,{\mathbb R})$-orbits of polynomial differential systems of degree four. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 65-72. http://geodesic.mathdoc.fr/item/BASM_2006_3_a6/
[1] Academic Press, 1982 | MR | Zbl
[2] Popa M. N., Applications of algebras to differential systems, Academy of Sciences of Moldova, Chişinău, 2001 (in Russian) | Zbl
[3] Braicov A. V., Popa M. N., “The $GL(2,\mathbb R)$-orbits of differential system with homogeneites second order”, The Internationals Conference “Differential and Integral Equations” (Odessa, September 12–14, 2000), 31
[4] Boularas D., Braicov A. V., Popa M. N., “Invariant conditions for dimensions of $GL(2,\mathbb R)$-orbits for quadratic differential system”, Bul. Acad. Sci. Rep. Moldova, Math., 2000, no. 2(33), 31–38 | MR | Zbl
[5] Boularas D., Braicov A. V., Popa M. N., “The $GL(2,\mathbb R)$-orbits of differential system with cubic homogeneites”, Bul. Acad. Sci. Rep. Moldova, Math., 2001, no. 1(35), 81–82 | MR | Zbl
[6] Naidenova E. V., Popa M. N., “On a classification of Orbits for Cubic Differential Systems”, Abstracts of “16th International Symposium on Nonlinear Acoustics”, section “Modern group analysis” (MOGRAN-9) (August 19–23, 2002, Moscow), 274
[7] Naidenova E. V., Popa M. N., “$GL(2,\mathbb R)$-orbits for one cubic system”, Abstracts of “11th Conference on Applied and Industrial Mathematics” (May 29–31, 2003, Oradea, Romania), 57
[8] Starus E. V., “Invariant conditions for the dimensions of the $GL(2,\mathbb R)$-orbits for one differential cubic system”, Bul. Acad. Sci. Rep. Moldova, Math., 2003, no. 3(43), 58–70 | MR
[9] Starus E. V., “The classification of the $GL(2,\mathbb R$-orbit's dimensions for the system $s(0,2)$ and a factorsystem $s(0,1,2)/GL(2,\mathbb R)$”, Bul. Acad. Sci. Rep. Moldova, Math., 2004, no. 1(44), 120–123 | MR | Zbl
[10] Păşcanu A., Şubă A., “$GL(2,\mathbb R)$-orbits of the polynomial systems of differential equation”, Bul. Acad. Sci. Rep. Moldova, Math., 2004, no. 3(46), 25–40