The $GL(2,{\mathbb R})$-orbits of polynomial differential systems of degree four
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 65-72

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we characterize the $GL(2,{\mathbb R})-$orbits of the differential systems $\dot{x}_1=P(x_1,x_2)$, $\dot{x}_2=Q(x_1,x_2),$ where $P,Q$ are polynomials of degree four, with respects to their dimensions.
@article{BASM_2006_3_a6,
     author = {Angela P\u{a}\c{s}canu},
     title = {The $GL(2,{\mathbb R})$-orbits of polynomial differential systems of degree four},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {65--72},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2006_3_a6/}
}
TY  - JOUR
AU  - Angela Păşcanu
TI  - The $GL(2,{\mathbb R})$-orbits of polynomial differential systems of degree four
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 65
EP  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2006_3_a6/
LA  - en
ID  - BASM_2006_3_a6
ER  - 
%0 Journal Article
%A Angela Păşcanu
%T The $GL(2,{\mathbb R})$-orbits of polynomial differential systems of degree four
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 65-72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2006_3_a6/
%G en
%F BASM_2006_3_a6
Angela Păşcanu. The $GL(2,{\mathbb R})$-orbits of polynomial differential systems of degree four. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 65-72. http://geodesic.mathdoc.fr/item/BASM_2006_3_a6/