Lie algebras of operators and invariant $GL(2,\mathbb{R})$-integrals for Darboux type differential systems
Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 3-16

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article two-dimensional autonomous Darboux type differential systems with nonlinearities of the $i^{th} (i=\overline{2,7})$ degree with respect to the phase variables are considered. For every such system the admitted Lie algebra is constructed. With the aid of these algebras particular invariant $GL(2,\mathbb{R})$-integrals as well as first integrals of considered systems are constructed. These integrals represent the algebraic curves of the $(i-1)^{th}(i=\overline{2,7})$ degree. It is showed that the Darboux type systems with nonlinearities of the $2^{nd}$, the $4^{th}$ and the $6^{th}$ degree with respect to the phase variables do not have limit cycles.
@article{BASM_2006_3_a0,
     author = {O. V. Diaconescu and M. N. Popa},
     title = {Lie algebras of operators and invariant $GL(2,\mathbb{R})$-integrals for {Darboux} type differential systems},
     journal = {Buletinul Academiei de \c{S}tiin\c{t}e a Republicii Moldova. Matematica},
     pages = {3--16},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/BASM_2006_3_a0/}
}
TY  - JOUR
AU  - O. V. Diaconescu
AU  - M. N. Popa
TI  - Lie algebras of operators and invariant $GL(2,\mathbb{R})$-integrals for Darboux type differential systems
JO  - Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
PY  - 2006
SP  - 3
EP  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/BASM_2006_3_a0/
LA  - en
ID  - BASM_2006_3_a0
ER  - 
%0 Journal Article
%A O. V. Diaconescu
%A M. N. Popa
%T Lie algebras of operators and invariant $GL(2,\mathbb{R})$-integrals for Darboux type differential systems
%J Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
%D 2006
%P 3-16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/BASM_2006_3_a0/
%G en
%F BASM_2006_3_a0
O. V. Diaconescu; M. N. Popa. Lie algebras of operators and invariant $GL(2,\mathbb{R})$-integrals for Darboux type differential systems. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, no. 3 (2006), pp. 3-16. http://geodesic.mathdoc.fr/item/BASM_2006_3_a0/